Objectives: This study describes and demonstrates the functionalities and application of a new R package, morphomap, designed to extract shape information as semilandmarks in multiple sections, build cortical thickness maps, and calculate biomechanical parameters on long bones. Methods: morphomap creates, froma single input (an oriented 3Dmesh representing the long bone surface), multiple evenly spaced virtual sections. morphomap then directly and rapidly computes morphometric and biomechanical parameters on each of these sections. The R package comprises three modules: (a) to place semilandmarks on the inner and outer outlines of each section, (b) to extract cortical thicknesses for 2D and 3D morphometric mapping, and (c) to compute cross-sectional geometry. Results: In this article, we apply morphomap to femora from Homo sapiens and Pan troglodytes to demonstrate its utility and show its typical outputs. morphomap greatly facilitates rapid analysis and functional interpretation of long bone form and should prove a valuable addition to the osteoarcheological analysis software toolkit. Conclusions: Long bone loading history is commonly retrodicted by calculating biomechanical parameters such as area moments of inertia, analyzing external shape and measuring cortical thickness. morphomap is a software written in the open source R environment, it integrates the main methodological approaches (geometric morphometrics, cortical morphometric maps, and cross-sectional geometry) used to parametrize long bones.

morphomap: An R package for long bone landmarking, cortical thickness, and cross-sectional geometry mapping

Antonio Profico
Primo
;
Damiano Marchi
Ultimo
Conceptualization
2020-01-01

Abstract

Objectives: This study describes and demonstrates the functionalities and application of a new R package, morphomap, designed to extract shape information as semilandmarks in multiple sections, build cortical thickness maps, and calculate biomechanical parameters on long bones. Methods: morphomap creates, froma single input (an oriented 3Dmesh representing the long bone surface), multiple evenly spaced virtual sections. morphomap then directly and rapidly computes morphometric and biomechanical parameters on each of these sections. The R package comprises three modules: (a) to place semilandmarks on the inner and outer outlines of each section, (b) to extract cortical thicknesses for 2D and 3D morphometric mapping, and (c) to compute cross-sectional geometry. Results: In this article, we apply morphomap to femora from Homo sapiens and Pan troglodytes to demonstrate its utility and show its typical outputs. morphomap greatly facilitates rapid analysis and functional interpretation of long bone form and should prove a valuable addition to the osteoarcheological analysis software toolkit. Conclusions: Long bone loading history is commonly retrodicted by calculating biomechanical parameters such as area moments of inertia, analyzing external shape and measuring cortical thickness. morphomap is a software written in the open source R environment, it integrates the main methodological approaches (geometric morphometrics, cortical morphometric maps, and cross-sectional geometry) used to parametrize long bones.
2020
Profico, Antonio; Bondioli, Luca; Raia, Pasquale; O'Higgins, Paul; Marchi, Damiano
File in questo prodotto:
File Dimensione Formato  
Profico et al., 2020, morphomap - An R package.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1051388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact