Computer-aided wet-spinning (CAWS) has emerged in the past few years as a hybrid fabrication technique coupling the advantages of additive manufacturing in controlling the external shape and macroporous structure of biomedical polymeric scaffold with those of wet-spinning in endowing the polymeric matrix with a spread microporosity. This book chapter is aimed at providing a detailed description of the experimental methods developed to fabricate by CAWS polymeric scaffolds with a predefined external shape and size as well as a controlled internal porous structure. The protocol for the preparation of poly(ε-caprolactone)-based scaffolds with a predefined pore size and geometry will be reported in detail as a reference example that can be followed and simply adapted to fabricate other kinds of scaffold, with a different porous structure or based on different biodegradable polymers, by applying the processing parameters reported in relevant tables included in the text.

Computer-Aided Wet-Spinning

Puppi D.
Primo
;
Chiellini F.
Ultimo
2020-01-01

Abstract

Computer-aided wet-spinning (CAWS) has emerged in the past few years as a hybrid fabrication technique coupling the advantages of additive manufacturing in controlling the external shape and macroporous structure of biomedical polymeric scaffold with those of wet-spinning in endowing the polymeric matrix with a spread microporosity. This book chapter is aimed at providing a detailed description of the experimental methods developed to fabricate by CAWS polymeric scaffolds with a predefined external shape and size as well as a controlled internal porous structure. The protocol for the preparation of poly(ε-caprolactone)-based scaffolds with a predefined pore size and geometry will be reported in detail as a reference example that can be followed and simply adapted to fabricate other kinds of scaffold, with a different porous structure or based on different biodegradable polymers, by applying the processing parameters reported in relevant tables included in the text.
2020
Puppi, D.; Chiellini, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1051947
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact