In this paper we show that a neighborhood of a point $s$ in a normal complex surface $S$ which admits a projection to the complex plane with branch curve $x^n=y^m$ is obtained by a contracting a section of a ruled surface and quotienting by the action of a finite group. From this description, we are able to find numerical criteria for the rationality and smoothness of the germ $(s,S)$.

Ruled surfaces and generic coverings

MANFREDINI, SANDRO;
2006-01-01

Abstract

In this paper we show that a neighborhood of a point $s$ in a normal complex surface $S$ which admits a projection to the complex plane with branch curve $x^n=y^m$ is obtained by a contracting a section of a ruled surface and quotienting by the action of a finite group. From this description, we are able to find numerical criteria for the rationality and smoothness of the germ $(s,S)$.
2006
Manfredini, Sandro; Pignatelli, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/105264
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact