The exciton Hamiltonian of multichromophoric aggregates can be probed by spectroscopic techniques such as linear absorption and circular dichroism. To compare calculated Hamiltonians to experiments, a lineshape theory is needed, which takes into account the coupling of the excitons with inter- and intramolecular vibrations. This coupling is normally introduced in a perturbative way through the cumulant expansion formalism and further approximated by assuming a Markovian exciton dynamics, for example with the modified Redfield theory. Here, we present the implementation of the full cumulant expansion (FCE) formalism ( J. Chem. Phys. 142, 2015, 094106) to efficiently compute absorption and circular dichroism spectra of molecular aggregates beyond the Markov approximation, without restrictions on the form of exciton-phonon coupling. By employing the LH2 system of purple bacteria as a challenging test case, we compare the FCE lineshapes with the Markovian lineshapes obtained with the modified Redfield theory, showing that the latter presents a less satisfying agreement with experiments. The FCE approach instead accurately describes the lineshapes, especially in the vibronic sideband of the B800 peak. We envision that the FCE approach will become a valuable tool for accurately comparing model exciton Hamiltonians with optical spectroscopy experiments.

Absorption and Circular Dichroism Spectra of Molecular Aggregates With the Full Cumulant Expansion

Cupellini, Lorenzo
Primo
;
Lipparini, Filippo;Cao, Jianshu
2020-01-01

Abstract

The exciton Hamiltonian of multichromophoric aggregates can be probed by spectroscopic techniques such as linear absorption and circular dichroism. To compare calculated Hamiltonians to experiments, a lineshape theory is needed, which takes into account the coupling of the excitons with inter- and intramolecular vibrations. This coupling is normally introduced in a perturbative way through the cumulant expansion formalism and further approximated by assuming a Markovian exciton dynamics, for example with the modified Redfield theory. Here, we present the implementation of the full cumulant expansion (FCE) formalism ( J. Chem. Phys. 142, 2015, 094106) to efficiently compute absorption and circular dichroism spectra of molecular aggregates beyond the Markov approximation, without restrictions on the form of exciton-phonon coupling. By employing the LH2 system of purple bacteria as a challenging test case, we compare the FCE lineshapes with the Markovian lineshapes obtained with the modified Redfield theory, showing that the latter presents a less satisfying agreement with experiments. The FCE approach instead accurately describes the lineshapes, especially in the vibronic sideband of the B800 peak. We envision that the FCE approach will become a valuable tool for accurately comparing model exciton Hamiltonians with optical spectroscopy experiments.
2020
Cupellini, Lorenzo; Lipparini, Filippo; Cao, Jianshu
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1052656
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact