Recently, exosomal release has been related to the acquisition of a malignant phenotype in glioblastoma cancer stem cells (GSCs). Remarkably, intriguing reports demonstrate that GSC-derived extracellular vesicles (EVs) contribute to glioblastoma multiforme (GBM) tumorigenesis via multiple pathways by regulating tumor growth, infiltration, and immune invasion. In fact, GSCs release tumor-promoting macrovesicles that can disseminate as paracrine factors to induce phenotypic alterations in glioma-associated parenchymal cells. In this way, GBM can actively recruit different stromal cells, which, in turn, may participate in tumor microenvironment (TME) remodeling and, thus, alter tumor progression. Vice versa, parenchymal cells can transfer their protein and genetic contents to GSCs by EVs; thus, promoting GSCs tumorigenicity. Moreover, GBM was shown to hijack EV-mediated cell-to-cell communication for self-maintenance. The present review examines the role of the mammalian Target of Rapamycin (mTOR) pathway in altering EVs/exosome-based cell-to-cell communication, thus modulating GBM infiltration and volume growth. In fact, exosomes have been implicated in GSC niche maintenance trough the modulation of GSCs stem cell-like properties, thus, affecting GBM infiltration and relapse. The present manuscript will focus on how EVs, and mostly exosomes, may act on GSCs and neighbor non tumorigenic stromal cells to modify their expression and translational profile, while making the TME surrounding the GSC niche more favorable for GBM growth and infiltration. Novel insights into the mTOR-dependent mechanisms regulating EV-mediated intercellular communication within GBM TME hold promising directions for future therapeutic applications.

MTOR modulates intercellular signals for enlargement and infiltration in glioblastoma multiforme

Ryskalin L.
Co-primo
;
Lenzi P.;Fornai F.
Ultimo
2020-01-01

Abstract

Recently, exosomal release has been related to the acquisition of a malignant phenotype in glioblastoma cancer stem cells (GSCs). Remarkably, intriguing reports demonstrate that GSC-derived extracellular vesicles (EVs) contribute to glioblastoma multiforme (GBM) tumorigenesis via multiple pathways by regulating tumor growth, infiltration, and immune invasion. In fact, GSCs release tumor-promoting macrovesicles that can disseminate as paracrine factors to induce phenotypic alterations in glioma-associated parenchymal cells. In this way, GBM can actively recruit different stromal cells, which, in turn, may participate in tumor microenvironment (TME) remodeling and, thus, alter tumor progression. Vice versa, parenchymal cells can transfer their protein and genetic contents to GSCs by EVs; thus, promoting GSCs tumorigenicity. Moreover, GBM was shown to hijack EV-mediated cell-to-cell communication for self-maintenance. The present review examines the role of the mammalian Target of Rapamycin (mTOR) pathway in altering EVs/exosome-based cell-to-cell communication, thus modulating GBM infiltration and volume growth. In fact, exosomes have been implicated in GSC niche maintenance trough the modulation of GSCs stem cell-like properties, thus, affecting GBM infiltration and relapse. The present manuscript will focus on how EVs, and mostly exosomes, may act on GSCs and neighbor non tumorigenic stromal cells to modify their expression and translational profile, while making the TME surrounding the GSC niche more favorable for GBM growth and infiltration. Novel insights into the mTOR-dependent mechanisms regulating EV-mediated intercellular communication within GBM TME hold promising directions for future therapeutic applications.
2020
Ryskalin, L.; Biagioni, F.; Lenzi, P.; Frati, A.; Fornai, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1053163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact