Oxaliplatin is a key drug in the treatment of advanced metastatic colorectal cancer. Despite its beneficial effects in tumor reduction, the most prevalent side-effect of oxaliplatin treatment is a chemotherapy-induced neuropathy that frequently forces to discontinue the therapy. Indeed along with direct damage to peripheral nerves, the chemotherapy-related neurotoxicity involves also the central nervous system (CNS) as demonstrated by pain chronicity and cognitive impairment (also known as chemobrain), a newly described pharmacological side effect. The presence of the blood brain barrier (BBB) is instrumental in preventing the entry of the drug into the CNS; here we tested the hypothesis that oxaliplatin might enter the endothelial cells of the BBB vessels and trigger a signaling pathway that induce the disassembly of the tight junctions, the critical components of the BBB integrity. By using a rat brain endothelial cell line (RBE4) we investigated the signaling pathway that ensued the entry of oxaliplatin within the cell. We found that the administration of 10 µM oxaliplatin for 8 and 16 h induced alterations of the tight junction (TJs) proteins zonula occludens-1 (ZO-1) and of F-actin, thus highlighting BBB alteration. Furthermore, we reported that intracellular oxaliplatin rapidly induced increased levels of reactive oxygen species and endoplasmic reticulum stress, assessed by the evaluation of glucose-regulated protein GRP78 expression levels. These events were accompanied by activation of caspase-3 that led to extracellular ATP release. These findings suggested a possible novel mechanism of action for oxaliplatin toxicity that could explain, at least in part, the chemotherapy-related central effects.

OXALIPLATIN-INDUCED BLOOD BRAIN BARRIER LOOSENING: A NEW POINT OF VIEW ON CHEMOTHERAPY-INDUCED NEUROTOXICITY

Branca J. J. V.;Morucci G.;Di Cesare Mannelli L.;Pacini A.
2018-01-01

Abstract

Oxaliplatin is a key drug in the treatment of advanced metastatic colorectal cancer. Despite its beneficial effects in tumor reduction, the most prevalent side-effect of oxaliplatin treatment is a chemotherapy-induced neuropathy that frequently forces to discontinue the therapy. Indeed along with direct damage to peripheral nerves, the chemotherapy-related neurotoxicity involves also the central nervous system (CNS) as demonstrated by pain chronicity and cognitive impairment (also known as chemobrain), a newly described pharmacological side effect. The presence of the blood brain barrier (BBB) is instrumental in preventing the entry of the drug into the CNS; here we tested the hypothesis that oxaliplatin might enter the endothelial cells of the BBB vessels and trigger a signaling pathway that induce the disassembly of the tight junctions, the critical components of the BBB integrity. By using a rat brain endothelial cell line (RBE4) we investigated the signaling pathway that ensued the entry of oxaliplatin within the cell. We found that the administration of 10 µM oxaliplatin for 8 and 16 h induced alterations of the tight junction (TJs) proteins zonula occludens-1 (ZO-1) and of F-actin, thus highlighting BBB alteration. Furthermore, we reported that intracellular oxaliplatin rapidly induced increased levels of reactive oxygen species and endoplasmic reticulum stress, assessed by the evaluation of glucose-regulated protein GRP78 expression levels. These events were accompanied by activation of caspase-3 that led to extracellular ATP release. These findings suggested a possible novel mechanism of action for oxaliplatin toxicity that could explain, at least in part, the chemotherapy-related central effects.
2018
Branca, J. J. V.; Maresca, M.; Morucci, G.; Becatti, M.; Paternostro, F.; Gulisano, M.; Ghelardini, C.; Salvemini, D.; Di Cesare Mannelli, L.; Pacini, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1053336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? ND
social impact