Symmetric Nonnegative Matrix Factorization (SymNMF) provides a symmetric nonnegative low rank decomposition of symmetric matrices. It has found application in several domains such as data mining, bioinformatics and graph clustering. In this paper SymNMF is obtained by solving a penalized nonsymmetric minimization problem. Instead of letting the penalizing parameter increase according to an a priori fixed rule, as suggested in literature, we propose a heuristic approach based on an adaptive technique. The factorization is performed by applying, as inner-outer procedure, the Alternating Nonnegative Least Squares (ANLS). The inner problems are solved by two nonnegative quadratic optimization methods: an Active-Set-like method (BPP) and theGreedy Coordinate Descentmethod (GCD). Extensive experimentation shows that the proposed heuristic approach is effective with both the inner methods, GCD outperforming BPP in terms of computational time complexity.

Adaptive computation of the Symmetric Nonnegative Matrix Factorization (SymNMF)

G. Lotti
Co-primo
;
O. Menchi
Co-primo
;
F. Romani
Co-primo
2020-01-01

Abstract

Symmetric Nonnegative Matrix Factorization (SymNMF) provides a symmetric nonnegative low rank decomposition of symmetric matrices. It has found application in several domains such as data mining, bioinformatics and graph clustering. In this paper SymNMF is obtained by solving a penalized nonsymmetric minimization problem. Instead of letting the penalizing parameter increase according to an a priori fixed rule, as suggested in literature, we propose a heuristic approach based on an adaptive technique. The factorization is performed by applying, as inner-outer procedure, the Alternating Nonnegative Least Squares (ANLS). The inner problems are solved by two nonnegative quadratic optimization methods: an Active-Set-like method (BPP) and theGreedy Coordinate Descentmethod (GCD). Extensive experimentation shows that the proposed heuristic approach is effective with both the inner methods, GCD outperforming BPP in terms of computational time complexity.
2020
Favati, P.; Lotti, G.; Menchi, O.; Romani, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1053906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact