Stream processing is a parallel paradigm used in many application domains. With the advance of graphics processing units (GPUs), their usage in stream processing applications has increased as well. The efficient utilization of GPU accelerators in streaming scenarios requires to batch input elements in microbatches, whose computation is offloaded on the GPU leveraging data parallelism within the same batch of data. Since data elements are continuously received based on the input speed, the bigger the microbatch size the higher the latency to completely buffer it and to start the processing on the device. Unfortunately, stream processing applications often have strict latency requirements that need to find the best size of the microbatches and to adapt it dynamically based on the workload conditions as well as according to the characteristics of the underlying device and network. In this work, we aim at implementing latency-aware adaptive microbatching techniques and algorithms for streaming compression applications targeting GPUs. The evaluation is conducted using the Lempel-Ziv-Storer-Szymanski compression application considering different input workloads. As a general result of our work, we noticed that algorithms with elastic adaptation factors respond better for stable workloads, while algorithms with narrower targets respond better for highly unbalanced workloads.

Latency-aware adaptive micro-batching techniques for streamed data compression on graphics processing units

Griebler D.;Torquati M.;Mencagli G.;Danelutto M.;
2021-01-01

Abstract

Stream processing is a parallel paradigm used in many application domains. With the advance of graphics processing units (GPUs), their usage in stream processing applications has increased as well. The efficient utilization of GPU accelerators in streaming scenarios requires to batch input elements in microbatches, whose computation is offloaded on the GPU leveraging data parallelism within the same batch of data. Since data elements are continuously received based on the input speed, the bigger the microbatch size the higher the latency to completely buffer it and to start the processing on the device. Unfortunately, stream processing applications often have strict latency requirements that need to find the best size of the microbatches and to adapt it dynamically based on the workload conditions as well as according to the characteristics of the underlying device and network. In this work, we aim at implementing latency-aware adaptive microbatching techniques and algorithms for streaming compression applications targeting GPUs. The evaluation is conducted using the Lempel-Ziv-Storer-Szymanski compression application considering different input workloads. As a general result of our work, we noticed that algorithms with elastic adaptation factors respond better for stable workloads, while algorithms with narrower targets respond better for highly unbalanced workloads.
2021
Stein, C. M.; Rockenbach, D. A.; Griebler, D.; Torquati, M.; Mencagli, G.; Danelutto, M.; Fernandes, L. G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1054222
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact