In this paper, we consider the Cauchy problem for the semilinear damped wave equation on the Heisenberg group with power non-linearity. We prove that the critical exponent is the Fujita exponent $p_{Fuj}(mathcal{Q}) = 1+2/mathcal{Q}$, where $mathcal{Q}$ is the homogeneous dimension of the Heisenberg group. On the one hand, we will prove the global existence of small data solutions for $p>p_{Fuj}(mathcal{Q})$ in an exponential weighted energy space. On the other hand, a blow-up result for $1

Critical exponent of Fujita-type for the semilinear damped wave equation on the Heisenberg group with power nonlinearity

Gueorguiev, Vladimir Simeonov;Palmieri, Alessandro
2020-01-01

Abstract

In this paper, we consider the Cauchy problem for the semilinear damped wave equation on the Heisenberg group with power non-linearity. We prove that the critical exponent is the Fujita exponent $p_{Fuj}(mathcal{Q}) = 1+2/mathcal{Q}$, where $mathcal{Q}$ is the homogeneous dimension of the Heisenberg group. On the one hand, we will prove the global existence of small data solutions for $p>p_{Fuj}(mathcal{Q})$ in an exponential weighted energy space. On the other hand, a blow-up result for $1
2020
Gueorguiev, Vladimir Simeonov; Palmieri, Alessandro
File in questo prodotto:
File Dimensione Formato  
Palm_2020.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 349.22 kB
Formato Adobe PDF
349.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
semilinear damped wave equation Heisenberg 12July19.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 288.8 kB
Formato Adobe PDF
288.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1055326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact