In this paper, we consider the Cauchy problem for the semilinear damped wave equation on the Heisenberg group with power non-linearity. We prove that the critical exponent is the Fujita exponent $p_{Fuj}(mathcal{Q}) = 1+2/mathcal{Q}$, where $mathcal{Q}$ is the homogeneous dimension of the Heisenberg group. On the one hand, we will prove the global existence of small data solutions for $p>p_{Fuj}(mathcal{Q})$ in an exponential weighted energy space. On the other hand, a blow-up result for $1
Critical exponent of Fujita-type for the semilinear damped wave equation on the Heisenberg group with power nonlinearity
Gueorguiev, Vladimir Simeonov;Palmieri, Alessandro
2020-01-01
Abstract
In this paper, we consider the Cauchy problem for the semilinear damped wave equation on the Heisenberg group with power non-linearity. We prove that the critical exponent is the Fujita exponent $p_{Fuj}(mathcal{Q}) = 1+2/mathcal{Q}$, where $mathcal{Q}$ is the homogeneous dimension of the Heisenberg group. On the one hand, we will prove the global existence of small data solutions for $p>p_{Fuj}(mathcal{Q})$ in an exponential weighted energy space. On the other hand, a blow-up result for $1File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Palm_2020.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
349.22 kB
Formato
Adobe PDF
|
349.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
semilinear damped wave equation Heisenberg 12July19.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
288.8 kB
Formato
Adobe PDF
|
288.8 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.