Arbuscular mycorrhizal fungi (AMF) promote crop growth and yield by increasing N and P uptake and disease resistance, but the role of field AMF inoculation on the uptake of micronutrients, such as Fe and Zn, and accumulation in plant edible portions is still not clarified. Therefore, we studied the eect of field inoculation with Rhizophagus irregularis in an organic system on 11 old genotypes and a modern variety of bread wheat. Inoculation increased root colonization, root biomass and shoot Zn concentration at early stage and grain Fe concentration at harvest, while it did not modify yield. Genotypes widely varied for shoot Zn concentration at early stage, and for plant height, grain yield, Zn and protein concentration at harvest. Inoculation dierentially modified root AMF community of the genotypes Autonomia B, Frassineto and Bologna. A higher abundance of Rhizophagus sp., putatively corresponding to the inoculated isolate, was only proved in Frassineto. The increase of plant growth and grain Zn content in Frassineto is likely linked to the higher R. irregularis abundance. The AMF role in increasing micronutrient uptake in grain was proved. This supports the introduction of inoculation in cereal farming, if the variable response of wheat genotypes to inoculation is considered.

Field inoculation of bread wheat with Rhizophagus irregularis under organic farming: variability in growth response and nutritional uptake of eleven old genotypes and a modern variety.

Arduini I.;Ercoli L.
2020-01-01

Abstract

Arbuscular mycorrhizal fungi (AMF) promote crop growth and yield by increasing N and P uptake and disease resistance, but the role of field AMF inoculation on the uptake of micronutrients, such as Fe and Zn, and accumulation in plant edible portions is still not clarified. Therefore, we studied the eect of field inoculation with Rhizophagus irregularis in an organic system on 11 old genotypes and a modern variety of bread wheat. Inoculation increased root colonization, root biomass and shoot Zn concentration at early stage and grain Fe concentration at harvest, while it did not modify yield. Genotypes widely varied for shoot Zn concentration at early stage, and for plant height, grain yield, Zn and protein concentration at harvest. Inoculation dierentially modified root AMF community of the genotypes Autonomia B, Frassineto and Bologna. A higher abundance of Rhizophagus sp., putatively corresponding to the inoculated isolate, was only proved in Frassineto. The increase of plant growth and grain Zn content in Frassineto is likely linked to the higher R. irregularis abundance. The AMF role in increasing micronutrient uptake in grain was proved. This supports the introduction of inoculation in cereal farming, if the variable response of wheat genotypes to inoculation is considered.
2020
Pellegrino, E.; Piazza, G.; Arduini, I.; Ercoli, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1056146
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
social impact