In this paper, we present some work towards a complete characterization of Hilbert quasi-polynomials of graded polynomial rings. In this setting, a Hilbert quasi-polynomial splits in a polynomial F and a lower degree quasi-polynomial G. We completely describe the periodic structure of G. Moreover, we give an explicit formula for the (n- 1) th and (n- 2) th coefficient of F, where n denotes the degree of F. Finally, we provide an algorithm to compute the Hilbert quasi-polynomial of any graded polynomial ring.
A partial characterization of Hilbert quasi-polynomials in the non-standard case
Caboara M.;
2022-01-01
Abstract
In this paper, we present some work towards a complete characterization of Hilbert quasi-polynomials of graded polynomial rings. In this setting, a Hilbert quasi-polynomial splits in a polynomial F and a lower degree quasi-polynomial G. We completely describe the periodic structure of G. Moreover, we give an explicit formula for the (n- 1) th and (n- 2) th coefficient of F, where n denotes the degree of F. Finally, we provide an algorithm to compute the Hilbert quasi-polynomial of any graded polynomial ring.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00200-020-00423-1.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
paper.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
461.22 kB
Formato
Adobe PDF
|
461.22 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.