In this paper, we present some work towards a complete characterization of Hilbert quasi-polynomials of graded polynomial rings. In this setting, a Hilbert quasi-polynomial splits in a polynomial F and a lower degree quasi-polynomial G. We completely describe the periodic structure of G. Moreover, we give an explicit formula for the (n- 1) th and (n- 2) th coefficient of F, where n denotes the degree of F. Finally, we provide an algorithm to compute the Hilbert quasi-polynomial of any graded polynomial ring.

A partial characterization of Hilbert quasi-polynomials in the non-standard case

Caboara M.;
2022-01-01

Abstract

In this paper, we present some work towards a complete characterization of Hilbert quasi-polynomials of graded polynomial rings. In this setting, a Hilbert quasi-polynomial splits in a polynomial F and a lower degree quasi-polynomial G. We completely describe the periodic structure of G. Moreover, we give an explicit formula for the (n- 1) th and (n- 2) th coefficient of F, where n denotes the degree of F. Finally, we provide an algorithm to compute the Hilbert quasi-polynomial of any graded polynomial ring.
2022
Caboara, M.; Mascia, C.
File in questo prodotto:
File Dimensione Formato  
s00200-020-00423-1.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 461.22 kB
Formato Adobe PDF
461.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1058172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact