In this paper, we present some work towards a complete characterization of Hilbert quasi-polynomials of graded polynomial rings. In this setting, a Hilbert quasi-polynomial splits in a polynomial F and a lower degree quasi-polynomial G. We completely describe the periodic structure of G. Moreover, we give an explicit formula for the (n- 1) th and (n- 2) th coefficient of F, where n denotes the degree of F. Finally, we provide an algorithm to compute the Hilbert quasi-polynomial of any graded polynomial ring.

A partial characterization of Hilbert quasi-polynomials in the non-standard case

Caboara M.;Mascia C.
2020-01-01

Abstract

In this paper, we present some work towards a complete characterization of Hilbert quasi-polynomials of graded polynomial rings. In this setting, a Hilbert quasi-polynomial splits in a polynomial F and a lower degree quasi-polynomial G. We completely describe the periodic structure of G. Moreover, we give an explicit formula for the (n- 1) th and (n- 2) th coefficient of F, where n denotes the degree of F. Finally, we provide an algorithm to compute the Hilbert quasi-polynomial of any graded polynomial ring.
2020
Caboara, M.; Mascia, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1058172
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact