We study the regularity of the free boundary for a vector-valued Bernoulli problem, with no sign assumptions on the boundary data. More precisely, given an open, smooth set of finite measure D ⊂ Rd, Λ > 0, and ϕ[symbol]i ∈ H1/2.(∂D), we deal with min [ ∫D [pipe]∇υi [pipe]2 +Λ [υi ≠ 0 ] [pipe]: υi + ϕ[symbol] i on ∂ D]. We prove that, for any optimal vector U = (u1,..., uk), the free boundary ∂ (∪ki=1 [ui ≠ 0] [n-ary intersection] D is made of a regular part, which is relatively open and locally the graph of a C∞ function, a (one-phase) singular part, of Hausdorff dimension at most d-d, for a d ∈ [5, 6, 7], and by a set of branching (two-phase) points, which is relatively closed and of finite Hd-1 measure. For this purpose we shall exploit the NTA property of the regular part to reduce ourselves to a scalar one-phase Bernoulli problem.

Regularity of the free boundary for the vectorial bernoulli problem

Velichkov B.
2020-01-01

Abstract

We study the regularity of the free boundary for a vector-valued Bernoulli problem, with no sign assumptions on the boundary data. More precisely, given an open, smooth set of finite measure D ⊂ Rd, Λ > 0, and ϕ[symbol]i ∈ H1/2.(∂D), we deal with min [ ∫D [pipe]∇υi [pipe]2 +Λ [υi ≠ 0 ] [pipe]: υi + ϕ[symbol] i on ∂ D]. We prove that, for any optimal vector U = (u1,..., uk), the free boundary ∂ (∪ki=1 [ui ≠ 0] [n-ary intersection] D is made of a regular part, which is relatively open and locally the graph of a C∞ function, a (one-phase) singular part, of Hausdorff dimension at most d-d, for a d ∈ [5, 6, 7], and by a set of branching (two-phase) points, which is relatively closed and of finite Hd-1 measure. For this purpose we shall exploit the NTA property of the regular part to reduce ourselves to a scalar one-phase Bernoulli problem.
2020
Mazzoleni, D.; Terracini, S.; Velichkov, B.
File in questo prodotto:
File Dimensione Formato  
apde version of record.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
APDE preprint.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 317.39 kB
Formato Adobe PDF
317.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1060691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact