We prove the existence and regularity of optimal shapes for the problem min{P(Ω)+G(Ω):Ω⊂D,|Ω|=m}, where P denotes the perimeter, |⋅| is the volume, and the functional G is either one of the following: • the Dirichlet energy Ef, with respect to a (possibly sign-changing) function f∈Lp;• a spectral functional of the form F(λ1,…,λk), where λk is the kth eigenvalue of the Dirichlet Laplacian and F:Rk→R is locally Lipschitz continuous and increasing in each variable.The domain D is the whole space Rd or a bounded domain. We also give general assumptions on the functional G so that the result remains valid.
Regularity of minimizers of shape optimization problems involving perimeter
Velichkov B.
2018-01-01
Abstract
We prove the existence and regularity of optimal shapes for the problem min{P(Ω)+G(Ω):Ω⊂D,|Ω|=m}, where P denotes the perimeter, |⋅| is the volume, and the functional G is either one of the following: • the Dirichlet energy Ef, with respect to a (possibly sign-changing) function f∈Lp;• a spectral functional of the form F(λ1,…,λk), where λk is the kth eigenvalue of the Dirichlet Laplacian and F:Rk→R is locally Lipschitz continuous and increasing in each variable.The domain D is the whole space Rd or a bounded domain. We also give general assumptions on the functional G so that the result remains valid.| File | Dimensione | Formato | |
|---|---|---|---|
|
1060701 Version of Record.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
698.57 kB
Formato
Adobe PDF
|
698.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
1060701 preprint.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
596.77 kB
Formato
Adobe PDF
|
596.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


