We prove the existence and regularity of optimal shapes for the problem min⁡{P(Ω)+G(Ω):Ω⊂D,|Ω|=m}, where P denotes the perimeter, |⋅| is the volume, and the functional G is either one of the following: • the Dirichlet energy Ef, with respect to a (possibly sign-changing) function f∈Lp;• a spectral functional of the form F(λ1,…,λk), where λk is the kth eigenvalue of the Dirichlet Laplacian and F:Rk→R is locally Lipschitz continuous and increasing in each variable.The domain D is the whole space Rd or a bounded domain. We also give general assumptions on the functional G so that the result remains valid.

Regularity of minimizers of shape optimization problems involving perimeter

Velichkov B.
2018-01-01

Abstract

We prove the existence and regularity of optimal shapes for the problem min⁡{P(Ω)+G(Ω):Ω⊂D,|Ω|=m}, where P denotes the perimeter, |⋅| is the volume, and the functional G is either one of the following: • the Dirichlet energy Ef, with respect to a (possibly sign-changing) function f∈Lp;• a spectral functional of the form F(λ1,…,λk), where λk is the kth eigenvalue of the Dirichlet Laplacian and F:Rk→R is locally Lipschitz continuous and increasing in each variable.The domain D is the whole space Rd or a bounded domain. We also give general assumptions on the functional G so that the result remains valid.
2018
De Philippis, G.; Lamboley, J.; Pierre, M.; Velichkov, B.
File in questo prodotto:
File Dimensione Formato  
1060701 Version of Record.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 698.57 kB
Formato Adobe PDF
698.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1060701 preprint.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 596.77 kB
Formato Adobe PDF
596.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1060701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact