The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet Laplacian among sets with given volume. In this article we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and by Bhattacharya and Weitsman. More generally, the result applies to every optimal Poincaré-Sobolev constant for the embeddings W 0 1,2 (ω) {right arrow, hooked} Lq(ω).
Faber-Krahn inequalities in sharp quantitative form
Velichkov B.
2015-01-01
Abstract
The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet Laplacian among sets with given volume. In this article we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and by Bhattacharya and Weitsman. More generally, the result applies to every optimal Poincaré-Sobolev constant for the embeddings W 0 1,2 (ω) {right arrow, hooked} Lq(ω).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1060703 preprint.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.