In this paper we prove that the shape optimization problem {λk (Ω) : Ω ⊂ ℝd, Ω open, P(Ω) = 1, |Ω| <+ ∞- has a solution for any k ∈ ℕ and dimension d. Moreover, every solution is a bounded connected open set with boundary which is C 1,α outside a closed set of Hausdorff dimension d-8. Our results are more general and apply to spectral functionals of the form λk1 (Ω)⋯ λkp (Ω)), for increasing functions f satisfying some suitable bi-Lipschitz type condition. © 2013 Springer Science+Business Media New York.
Existence and regularity of minimizers for some spectral functionals with perimeter constraint
Velichkov B.
2014-01-01
Abstract
In this paper we prove that the shape optimization problem {λk (Ω) : Ω ⊂ ℝd, Ω open, P(Ω) = 1, |Ω| <+ ∞- has a solution for any k ∈ ℕ and dimension d. Moreover, every solution is a bounded connected open set with boundary which is C 1,α outside a closed set of Hausdorff dimension d-8. Our results are more general and apply to spectral functionals of the form λk1 (Ω)⋯ λkp (Ω)), for increasing functions f satisfying some suitable bi-Lipschitz type condition. © 2013 Springer Science+Business Media New York.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1060709 Version of record.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1060709 preprint.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
759.25 kB
Formato
Adobe PDF
|
759.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.