In this paper we prove that the shape optimization problem {λk (Ω) : Ω ⊂ ℝd, Ω open, P(Ω) = 1, |Ω| <+ ∞- has a solution for any k ∈ ℕ and dimension d. Moreover, every solution is a bounded connected open set with boundary which is C 1,α outside a closed set of Hausdorff dimension d-8. Our results are more general and apply to spectral functionals of the form λk1 (Ω)⋯ λkp (Ω)), for increasing functions f satisfying some suitable bi-Lipschitz type condition. © 2013 Springer Science+Business Media New York.

Existence and regularity of minimizers for some spectral functionals with perimeter constraint

Velichkov B.
2014-01-01

Abstract

In this paper we prove that the shape optimization problem {λk (Ω) : Ω ⊂ ℝd, Ω open, P(Ω) = 1, |Ω| <+ ∞- has a solution for any k ∈ ℕ and dimension d. Moreover, every solution is a bounded connected open set with boundary which is C 1,α outside a closed set of Hausdorff dimension d-8. Our results are more general and apply to spectral functionals of the form λk1 (Ω)⋯ λkp (Ω)), for increasing functions f satisfying some suitable bi-Lipschitz type condition. © 2013 Springer Science+Business Media New York.
2014
De Philippis, G.; Velichkov, B.
File in questo prodotto:
File Dimensione Formato  
1060709 Version of record.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1060709 preprint.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 759.25 kB
Formato Adobe PDF
759.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1060709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact