We develop a pre-stack inversion algorithm that combines a Discrete Cosine Transform (DCT) reparameterization of data and model spaces with a Convolutional Neural Network (CNN). The CNN is trained to predict the mapping between the DCT-transformed seismic data and the DCT-transformed 2-D elastic model. A convolutional forward modeling based on the full Zoeppritz equations constitutes the link between the elastic properties and the seismic data. The direct sequential co-simulation algorithm with joint probability distribution is used to generate the training and validation datasets under the assumption of a stationary non-parametric prior and a Gaussian variogram model for the elastic properties. The DCT is an orthogonal transformation that is here used as an additional feature extraction technique that reduces the number of unknown parameters in the inversion and the dimensionality of the input and output of the network. The DCT reparameterization also acts as a regularization operator in the model space and allows for the preservation of the lateral and vertical continuity of the elastic properties in the recovered solution. We also implement a Monte Carlo simulation strategy that propagates onto the estimated elastic model the uncertainties related to both noise contamination and network approximation. We focus on synthetic inversions on a realistic subsurface model that mimics a real gas-saturated reservoir hosted in a turbiditic sequence. We compare the outcomes of the implemented algorithm with those provided by a popular linear inversion approach and we also assess the robustness of the CNN inversion to errors in the estimated source wavelet and to erroneous assumptions about the noise statistic. Our tests confirm the applicability of the proposed approach, opening the possibility to estimate the subsurface elastic parameters and the associated uncertainties in near real-time while satisfactorily preserving the assumed spatial variability and the statistical properties of the elastic parameters.

Elastic pre-stack seismic inversion through Discrete Cosine Transform reparameterization and Convolutional Neural Networks

ALEARDI, Mattia
;
2021-01-01

Abstract

We develop a pre-stack inversion algorithm that combines a Discrete Cosine Transform (DCT) reparameterization of data and model spaces with a Convolutional Neural Network (CNN). The CNN is trained to predict the mapping between the DCT-transformed seismic data and the DCT-transformed 2-D elastic model. A convolutional forward modeling based on the full Zoeppritz equations constitutes the link between the elastic properties and the seismic data. The direct sequential co-simulation algorithm with joint probability distribution is used to generate the training and validation datasets under the assumption of a stationary non-parametric prior and a Gaussian variogram model for the elastic properties. The DCT is an orthogonal transformation that is here used as an additional feature extraction technique that reduces the number of unknown parameters in the inversion and the dimensionality of the input and output of the network. The DCT reparameterization also acts as a regularization operator in the model space and allows for the preservation of the lateral and vertical continuity of the elastic properties in the recovered solution. We also implement a Monte Carlo simulation strategy that propagates onto the estimated elastic model the uncertainties related to both noise contamination and network approximation. We focus on synthetic inversions on a realistic subsurface model that mimics a real gas-saturated reservoir hosted in a turbiditic sequence. We compare the outcomes of the implemented algorithm with those provided by a popular linear inversion approach and we also assess the robustness of the CNN inversion to errors in the estimated source wavelet and to erroneous assumptions about the noise statistic. Our tests confirm the applicability of the proposed approach, opening the possibility to estimate the subsurface elastic parameters and the associated uncertainties in near real-time while satisfactorily preserving the assumed spatial variability and the statistical properties of the elastic parameters.
2021
Aleardi, Mattia; Salusti, Alessandro
File in questo prodotto:
File Dimensione Formato  
paper_AVA_CNN_accepted_version.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.4 MB
Formato Adobe PDF
3.4 MB Adobe PDF Visualizza/Apri
Paper_AVA_CNN_published_compressed.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 3.29 MB
Formato Adobe PDF
3.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1060980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 34
social impact