In an arbitrary unitary 4D CFT we consider a scalar operator φ, and the operator φ2 defined as the lowest dimension scalar which appears in the OPE φ × φ with a nonzero coefficient. Using general considerations of OPE, conformal block decomposition, and crossing symmetry, we derive a theory-independent inequality [φ2] f([φ]) for the dimensions of these two operators. The function f(d) entering this bound is computed numerically. For d1 we have f(d) = 2+O((d-1)1/2), which shows that the free theory limit is approached continuously. We perform some checks of our bound. We find that the bound is satisfied by all weakly coupled 4D conformal fixed points that we are able to construct. The Wilson-Fischer fixed points violate the bound by a constant O(1) factor, which must be due to the subtleties of extrapolating to 4- dimensions. We use our method to derive an analogous bound in 2D, and check that the Minimal Models satisfy the bound, with the Ising model nearly-saturating it. Derivation of an analogous bound in 3D is currently not feasible because the explicit conformal blocks are not known in odd dimensions. We also discuss the main phenomenological motivation for studying this set of questions: constructing models of dynamical ElectroWeak Symmetry Breaking without flavor problems. © 2008 SISSA.

Bounding scalar operator dimensions in 4D CFT

Tonni E.;Vichi A.
2008-01-01

Abstract

In an arbitrary unitary 4D CFT we consider a scalar operator φ, and the operator φ2 defined as the lowest dimension scalar which appears in the OPE φ × φ with a nonzero coefficient. Using general considerations of OPE, conformal block decomposition, and crossing symmetry, we derive a theory-independent inequality [φ2] f([φ]) for the dimensions of these two operators. The function f(d) entering this bound is computed numerically. For d1 we have f(d) = 2+O((d-1)1/2), which shows that the free theory limit is approached continuously. We perform some checks of our bound. We find that the bound is satisfied by all weakly coupled 4D conformal fixed points that we are able to construct. The Wilson-Fischer fixed points violate the bound by a constant O(1) factor, which must be due to the subtleties of extrapolating to 4- dimensions. We use our method to derive an analogous bound in 2D, and check that the Minimal Models satisfy the bound, with the Ising model nearly-saturating it. Derivation of an analogous bound in 3D is currently not feasible because the explicit conformal blocks are not known in odd dimensions. We also discuss the main phenomenological motivation for studying this set of questions: constructing models of dynamical ElectroWeak Symmetry Breaking without flavor problems. © 2008 SISSA.
2008
Rattazzi, R.; Rychkov, V. S.; Tonni, E.; Vichi, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1062459
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 664
  • ???jsp.display-item.citation.isi??? 628
social impact