We determine the scaling properties of geometric operators such as lengths, areas, and volumes in models of higher derivative quantum gravity by renormalizing appropriate composite operators. We use these results to deduce the fractal dimensions of such hypersurfaces embedded in a quantum spacetime at very small distances.
Fractal Geometry of Higher Derivative Gravity
Zanusso O.
2020-01-01
Abstract
We determine the scaling properties of geometric operators such as lengths, areas, and volumes in models of higher derivative quantum gravity by renormalizing appropriate composite operators. We use these results to deduce the fractal dimensions of such hypersurfaces embedded in a quantum spacetime at very small distances.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1911.02415.pdf
accesso aperto
Descrizione: versione arXiv
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
175.64 kB
Formato
Adobe PDF
|
175.64 kB | Adobe PDF | Visualizza/Apri |
PhysRevLett.124.151302.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
183.21 kB
Formato
Adobe PDF
|
183.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.