A benchmark activity on Two-Phase Critical Flow (TPCF) prediction was conducted in the framework of the Forum & Network of System Thermal-Hydraulics Nuclear Reactor Thermal-Hydraulics (FONESYS). FONESYS is a network among code developers who share the common objective to strengthen current technology. The aim of the FONESYS Network is to highlight the capabilities and the robustness as well as the limitations of current SYSTH codes to predict the main phenomena during transient scenarios in nuclear reactors for safety issues. Six separate effect test facilities, more than 90 tests, both in steady and transient conditions, were considered for the activity. Moreover, two ideal tests were designed for code to code comparison in clearly defined conditions. Overall eight System Thermal-Hydraulic (SYS-TH) codes were adopted, mostly by the developers themselves, ensuring the minimization of the user effect. Results from selected tests were also compared against Delayed Equilibrium Model, not yet implemented in industrial version of SYS-TH codes. Generally, the results of the benchmark show an improvement of the capability of SYS-TH codes to predict TPCF in the last three decades. However, predicting break flowrate remains a major source of uncertainty in accidental transient simulations of Water-Cooled Nuclear Reactors (WCNR). A set of possible actions is proposed to go beyond the current limitations of choked flow models. More detailed guidelines for using 0-D choked flow models is possible by using the experience gained by the benchmark results as well as all available validation results. Progress in understanding and 1-D modelling of flashing and choked flow might be achieved by a deeper physical analysis leading to more mechanistic models based on specific flow regime maps for high speed flow. Also the use of advanced 3-D numerical tools may help to understand and predict the complex 3-D geometrical effects

Critical flow prediction by system codes – Recent analyses made within the FONESYS network

D'Auria F.
Supervision
;
2020-01-01

Abstract

A benchmark activity on Two-Phase Critical Flow (TPCF) prediction was conducted in the framework of the Forum & Network of System Thermal-Hydraulics Nuclear Reactor Thermal-Hydraulics (FONESYS). FONESYS is a network among code developers who share the common objective to strengthen current technology. The aim of the FONESYS Network is to highlight the capabilities and the robustness as well as the limitations of current SYSTH codes to predict the main phenomena during transient scenarios in nuclear reactors for safety issues. Six separate effect test facilities, more than 90 tests, both in steady and transient conditions, were considered for the activity. Moreover, two ideal tests were designed for code to code comparison in clearly defined conditions. Overall eight System Thermal-Hydraulic (SYS-TH) codes were adopted, mostly by the developers themselves, ensuring the minimization of the user effect. Results from selected tests were also compared against Delayed Equilibrium Model, not yet implemented in industrial version of SYS-TH codes. Generally, the results of the benchmark show an improvement of the capability of SYS-TH codes to predict TPCF in the last three decades. However, predicting break flowrate remains a major source of uncertainty in accidental transient simulations of Water-Cooled Nuclear Reactors (WCNR). A set of possible actions is proposed to go beyond the current limitations of choked flow models. More detailed guidelines for using 0-D choked flow models is possible by using the experience gained by the benchmark results as well as all available validation results. Progress in understanding and 1-D modelling of flashing and choked flow might be achieved by a deeper physical analysis leading to more mechanistic models based on specific flow regime maps for high speed flow. Also the use of advanced 3-D numerical tools may help to understand and predict the complex 3-D geometrical effects
2020
Lanfredini, M.; Bestion, D.; D'Auria, F.; Aksan, N.; Fillion, P.; Gaillard, P.; Heo, J.; Karppinen, J.; Kim, K. D.; Kurki, J. Liu L.; Shen, A.; Vacher, J-L.; Wang, D.
File in questo prodotto:
File Dimensione Formato  
13-J-NED-Fonesys_TPCF.pdf

non disponibili

Descrizione: final paper
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1064167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact