Data from the International Energy Agency confirm that in a zero-energy perspective the integration of solar systems in buildings is essential. The development of passive solar strategies has suffered the lack of standard performance indicators and design guidelines. The aim of this paper is to provide a critical analysis of the main passive solar design strategies based on their classification, performance evaluation and selection methods, with a focus on integrability. Climate and latitude affect the amount of incident solar radiation and the heat losses, while integrability mainly depends on the building structure. For existing buildings, shading and direct systems represent the easiest and most effective passive strategies, while building orientation and shape are limited to new constructions: proper design can reduce building energy demand around 40%. Commercial buildings prefer direct use systems while massive ones with integrated heat storage are more suitable for family houses. A proper selection must consider the energy and economic balance of different building services involved: a multi-objective evaluation method represents the most valid tool to determine the overall performance of passive solar strategies.
Passive solar systems for buildings: Performance indicators analysis and guidelines for the design
Cillari G.
;Fantozzi F.;Franco A.
2020-01-01
Abstract
Data from the International Energy Agency confirm that in a zero-energy perspective the integration of solar systems in buildings is essential. The development of passive solar strategies has suffered the lack of standard performance indicators and design guidelines. The aim of this paper is to provide a critical analysis of the main passive solar design strategies based on their classification, performance evaluation and selection methods, with a focus on integrability. Climate and latitude affect the amount of incident solar radiation and the heat losses, while integrability mainly depends on the building structure. For existing buildings, shading and direct systems represent the easiest and most effective passive strategies, while building orientation and shape are limited to new constructions: proper design can reduce building energy demand around 40%. Commercial buildings prefer direct use systems while massive ones with integrated heat storage are more suitable for family houses. A proper selection must consider the energy and economic balance of different building services involved: a multi-objective evaluation method represents the most valid tool to determine the overall performance of passive solar strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.