In this paper we address the issue of improving ECC correction ability beyond that provided by the standard SEC/DED Hsiao code. We analyze the impact of the standard SEC/DED Hsiao ECC and for several double error correcting (DEC) codes on area overhead and cache memory access time for different codeword sizes and code-segment sizes, as well as their correction ability as a function of codeword/code-segment sizes. We show the different trade-offs that can be achieved in terms of impact on area overhead, performance and correction ability, thus giving insight to designers for the selection of the optimal ECC and codeword organization/code-segment size for a given application. © 2011 EDAA.

Error correcting code analysis for cache memory high reliability and performance

Rossi D.
;
2011-01-01

Abstract

In this paper we address the issue of improving ECC correction ability beyond that provided by the standard SEC/DED Hsiao code. We analyze the impact of the standard SEC/DED Hsiao ECC and for several double error correcting (DEC) codes on area overhead and cache memory access time for different codeword sizes and code-segment sizes, as well as their correction ability as a function of codeword/code-segment sizes. We show the different trade-offs that can be achieved in terms of impact on area overhead, performance and correction ability, thus giving insight to designers for the selection of the optimal ECC and codeword organization/code-segment size for a given application. © 2011 EDAA.
2011
978-3-9810801-8-6
978-1-61284-208-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1065979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 7
social impact