Let p=(P) be any prime of Fq[t], let m be any ideal of Fq[t] not divisible by p and consider the space of Drinfeld cusp forms of level mp, i.e. for the modular group Γ0(mp). Using degeneracy maps, traces and Fricke involutions we offer definitions for p-oldforms and p-newforms which turn out to be subspaces stable with respect to the action of the Atkin operator UP. We provide eigenvalues and/or slopes for p-oldforms and p-newforms and a condition to get the whole space of cusp forms as the direct sum between them.
Drinfeld cusp forms: oldforms and newforms
Bandini A.;
2022-01-01
Abstract
Let p=(P) be any prime of Fq[t], let m be any ideal of Fq[t] not divisible by p and consider the space of Drinfeld cusp forms of level mp, i.e. for the modular group Γ0(mp). Using degeneracy maps, traces and Fricke involutions we offer definitions for p-oldforms and p-newforms which turn out to be subspaces stable with respect to the action of the Atkin operator UP. We provide eigenvalues and/or slopes for p-oldforms and p-newforms and a condition to get the whole space of cusp forms as the direct sum between them.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
BVJNT2022.pdf
non disponibili
Descrizione: Articolo
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
393.4 kB
Formato
Adobe PDF
|
393.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
BV_DCF_2.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
366.91 kB
Formato
Adobe PDF
|
366.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


