Let F be a global function field of characteristic p with ring of integers A and let Φ be a Hayes module on the Hilbert class field H_A of F. We prove an Iwasawa Main Conjecture for the (Z_p)^∞-extension mathcal{F}/F generated by the mathfrak{p}-power torsion of Φ (mathfrak{p} a prime of A). The main tool is a Stickelberger series whose specialization provides a generator for the Fitting ideal of the class group of F. Moreover we prove that the same series, evaluated at complex or mathfrak{p}-adic characters, interpolates the Goss Zeta-function or some mathfrak{p}-adic L-function, thus providing the link between the algebraic structure (class groups) and the analytic functions, which is the crucial part of Iwasawa Main Conjecture.

Stickelberger series and Main Conjecture for function fields

andrea bandini;
2021-01-01

Abstract

Let F be a global function field of characteristic p with ring of integers A and let Φ be a Hayes module on the Hilbert class field H_A of F. We prove an Iwasawa Main Conjecture for the (Z_p)^∞-extension mathcal{F}/F generated by the mathfrak{p}-power torsion of Φ (mathfrak{p} a prime of A). The main tool is a Stickelberger series whose specialization provides a generator for the Fitting ideal of the class group of F. Moreover we prove that the same series, evaluated at complex or mathfrak{p}-adic characters, interpolates the Goss Zeta-function or some mathfrak{p}-adic L-function, thus providing the link between the algebraic structure (class groups) and the analytic functions, which is the crucial part of Iwasawa Main Conjecture.
2021
Bandini, Andrea; Coscelli, Edoardo
File in questo prodotto:
File Dimensione Formato  
BCPubMath2021.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 548.13 kB
Formato Adobe PDF
548.13 kB Adobe PDF Visualizza/Apri
BCIMCV1PubMat.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 496.31 kB
Formato Adobe PDF
496.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1067328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact