The spectral efficiency of wireless networks can be made nearly infinitely large by deploying many antennas, but the deployment of very many antennas requires new topologies beyond the compact and discrete antenna arrays used by conventional base stations. In this paper, we consider the large intelligent surface scenario where small antennas are deployed on a large and dense two-dimensional grid. Building on the heritage of MIMO, we first analyze the beamwidth and sidelobes when transmitting from large intelligent surfaces. We compare different precoding schemes and determine how to optimize the transmit power with respect to different utility functions.

Utility-Based Precoding Optimization Framework for Large Intelligent Surfaces

Sanguinetti L.
2019-01-01

Abstract

The spectral efficiency of wireless networks can be made nearly infinitely large by deploying many antennas, but the deployment of very many antennas requires new topologies beyond the compact and discrete antenna arrays used by conventional base stations. In this paper, we consider the large intelligent surface scenario where small antennas are deployed on a large and dense two-dimensional grid. Building on the heritage of MIMO, we first analyze the beamwidth and sidelobes when transmitting from large intelligent surfaces. We compare different precoding schemes and determine how to optimize the transmit power with respect to different utility functions.
2019
978-1-7281-4300-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1067478
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact