We consider the Mean Field limit of Gibbsian ensembles of 2-dimensional (2D) point vortices on the torus. It is a classical result that in such limit correlations functions converge to 1, that is, point vortices decorrelate: We compute the rate at which this convergence takes place by means of Gaussian integration techniques, inspired by the correspondence between the 2D Coulomb gas and the Sine-Gordon Euclidean field theory.
Decay of correlation rate in the mean field limit of point vortices ensembles
Grotto F.;Romito M.
2020-01-01
Abstract
We consider the Mean Field limit of Gibbsian ensembles of 2-dimensional (2D) point vortices on the torus. It is a classical result that in such limit correlations functions converge to 1, that is, point vortices decorrelate: We compute the rate at which this convergence takes place by means of Gaussian integration techniques, inspired by the correspondence between the 2D Coulomb gas and the Sine-Gordon Euclidean field theory.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GroRom2020a.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
215.09 kB
Formato
Adobe PDF
|
215.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2001.04882.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
216.58 kB
Formato
Adobe PDF
|
216.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.