In the last ten years, artificial intelligence (AI) techniques have been applied in archaeology. The ArchAIDE project realised an AI-based application to recognise archaeological pottery. Pottery is of paramount importance for understanding archaeological contexts. However, recognition of ceramics is still a manual, time-consuming activity, reliant on analogue catalogues. The project developed two complementary machine-learning tools to propose identifications based on images captured on-site, for optimising and economising this process, while retaining key decision points necessary to create trusted results. One method relies on the shape of a potsherd; the other is based on decorative features. For the shape-based recognition, a novel deep-learning architecture was employed, integrating shape information from points along the inner and outer profile of a sherd. The decoration classifier is based on relatively standard architectures used in image recognition. In both cases, training the algorithms meant facing challenges related to real-world archaeological data: the scarcity of labelled data; extreme imbalance between instances of different categories; and the need to take note of minute differentiating features. Finally, the creation of a desktop and mobile application that integrates the AI classifiers provides an easy-to-use interface for pottery classification and storing pottery data.

An Open System for Collection and Automatic Recognition of Pottery through Neural Network Algorithms

Gualandi Maria Letizia
Co-primo
Writing – Original Draft Preparation
;
Gattiglia Gabriele
Co-primo
Writing – Original Draft Preparation
;
Anichini Francesca
Co-primo
Writing – Original Draft Preparation
2021-01-01

Abstract

In the last ten years, artificial intelligence (AI) techniques have been applied in archaeology. The ArchAIDE project realised an AI-based application to recognise archaeological pottery. Pottery is of paramount importance for understanding archaeological contexts. However, recognition of ceramics is still a manual, time-consuming activity, reliant on analogue catalogues. The project developed two complementary machine-learning tools to propose identifications based on images captured on-site, for optimising and economising this process, while retaining key decision points necessary to create trusted results. One method relies on the shape of a potsherd; the other is based on decorative features. For the shape-based recognition, a novel deep-learning architecture was employed, integrating shape information from points along the inner and outer profile of a sherd. The decoration classifier is based on relatively standard architectures used in image recognition. In both cases, training the algorithms meant facing challenges related to real-world archaeological data: the scarcity of labelled data; extreme imbalance between instances of different categories; and the need to take note of minute differentiating features. Finally, the creation of a desktop and mobile application that integrates the AI classifiers provides an easy-to-use interface for pottery classification and storing pottery data.
2021
Gualandi, MARIA LETIZIA; Gattiglia, Gabriele; Anichini, Francesca
File in questo prodotto:
File Dimensione Formato  
Archaide Heritage.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.85 MB
Formato Adobe PDF
4.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1074046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 20
social impact