Over the years, nanogenerators for health monitoring have become more and more attractive as they provide a cost-effective and continuous way to successfully measure vital signs, physiological status, and environmental changes in/around a person. Using such sensors can positively affect the way healthcare workers diagnose and prevent life-threatening conditions. Recently, the dual piezo-tribological effect of hybrid nanogenerators (HBNGs) have become a subject of investigation, as they can provide a substantial amount of data, which is significant for healthcare. However, real-life exploitation of these HBNGs in health monitoring is still marginal. This review covers piezo-tribo dual-effect HBNGs that are used as sensors to measure the different movements and changes in the human body such as blood circulation, respiration, and muscle contractions. Piezo-tribo dual-effect HBNGs are applicable within various healthcare settings as a means of powering noninvasive sensors, providing the capability of constant patient monitoring without interfering with the range of motion or comfort of the user. This review also intends to suggest future improvements in HBNGs. These include incorporating surface modification techniques, utilizing nanowires, nanoparticle technologies, and other means of chemical surface modifications. These improvements can contribute significantly in terms of the electrical output of the HBNGs and can enhance their prospects of applications in the field of health monitoring, as well as various in vitro/in vivo biomedical applications. While a promising option, improved HBNGs are still lacking. This review also discusses the technical issue which has prevented so far, the real use of these sensors.

Piezo-tribo dual effect hybrid nanogenerators for health monitoring

Danti S.
Penultimo
;
2021-01-01

Abstract

Over the years, nanogenerators for health monitoring have become more and more attractive as they provide a cost-effective and continuous way to successfully measure vital signs, physiological status, and environmental changes in/around a person. Using such sensors can positively affect the way healthcare workers diagnose and prevent life-threatening conditions. Recently, the dual piezo-tribological effect of hybrid nanogenerators (HBNGs) have become a subject of investigation, as they can provide a substantial amount of data, which is significant for healthcare. However, real-life exploitation of these HBNGs in health monitoring is still marginal. This review covers piezo-tribo dual-effect HBNGs that are used as sensors to measure the different movements and changes in the human body such as blood circulation, respiration, and muscle contractions. Piezo-tribo dual-effect HBNGs are applicable within various healthcare settings as a means of powering noninvasive sensors, providing the capability of constant patient monitoring without interfering with the range of motion or comfort of the user. This review also intends to suggest future improvements in HBNGs. These include incorporating surface modification techniques, utilizing nanowires, nanoparticle technologies, and other means of chemical surface modifications. These improvements can contribute significantly in terms of the electrical output of the HBNGs and can enhance their prospects of applications in the field of health monitoring, as well as various in vitro/in vivo biomedical applications. While a promising option, improved HBNGs are still lacking. This review also discusses the technical issue which has prevented so far, the real use of these sensors.
2021
Shawon, S. M. A. Z.; Sun, A. X.; Vega, V. S.; Chowdhury, B. D.; Tran, P.; Carballo, Z. D.; Tolentino, J. A.; Li, J.; Rafaqut, M. S.; Danti, S.; Uddin, M. J.
File in questo prodotto:
File Dimensione Formato  
Piezo Tribo accepted.pdf

Open Access dal 01/05/2023

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF Visualizza/Apri
Piezo Tribo version of record.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1075756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 30
social impact