Screening procedures in road blackspot detection are essential tools for road authorities for quickly gathering insights on the safety level of each road site they manage. This paper suggests a road blackspot screening procedure for two-lane rural roads, relying on five different machine learning algorithms (MLAs) and real long-term traffic data. The network analyzed is the one managed by the Tuscany Region Road Administration, mainly composed of two-lane rural roads. An amount of 995 road sites, where at least one accident occurred in 2012-2016, have been labeled as "Accident Case". Accordingly, an equal number of sites where no accident occurred in the same period, have been randomly selected and labeled as "Non-Accident Case". Five different MLAs, namely Logistic Regression, Classification and Regression Tree, Random Forest, K-Nearest Neighbor, and Naïve Bayes, have been trained and validated. The output response of the MLAs, i.e., crash occurrence susceptibility, is a binary categorical variable. Therefore, such algorithms aim to classify a road site as likely safe ("Accident Case") or potentially susceptible to an accident occurrence ("Non-Accident Case") over five years. Finally, algorithms have been compared by a set of performance metrics, including precision, recall, F1-score, overall accuracy, confusion matrix, and the Area Under the Receiver Operating Characteristic. Outcomes show that the Random Forest outperforms the other MLAs with an overall accuracy of 73.53%. Furthermore, all the MLAs do not show overfitting issues. Road authorities could consider MLAs to draw up a priority list of on-site inspections and maintenance interventions.
Long-term-based road blackspot screening procedures by machine learning algorithms
Fiorentini N.
Primo
;Losa M.Secondo
2020-01-01
Abstract
Screening procedures in road blackspot detection are essential tools for road authorities for quickly gathering insights on the safety level of each road site they manage. This paper suggests a road blackspot screening procedure for two-lane rural roads, relying on five different machine learning algorithms (MLAs) and real long-term traffic data. The network analyzed is the one managed by the Tuscany Region Road Administration, mainly composed of two-lane rural roads. An amount of 995 road sites, where at least one accident occurred in 2012-2016, have been labeled as "Accident Case". Accordingly, an equal number of sites where no accident occurred in the same period, have been randomly selected and labeled as "Non-Accident Case". Five different MLAs, namely Logistic Regression, Classification and Regression Tree, Random Forest, K-Nearest Neighbor, and Naïve Bayes, have been trained and validated. The output response of the MLAs, i.e., crash occurrence susceptibility, is a binary categorical variable. Therefore, such algorithms aim to classify a road site as likely safe ("Accident Case") or potentially susceptible to an accident occurrence ("Non-Accident Case") over five years. Finally, algorithms have been compared by a set of performance metrics, including precision, recall, F1-score, overall accuracy, confusion matrix, and the Area Under the Receiver Operating Characteristic. Outcomes show that the Random Forest outperforms the other MLAs with an overall accuracy of 73.53%. Furthermore, all the MLAs do not show overfitting issues. Road authorities could consider MLAs to draw up a priority list of on-site inspections and maintenance interventions.File | Dimensione | Formato | |
---|---|---|---|
Losa_1076861.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.