The present study assessed the in vivo rat pial microvascular responses induced by melatonin during brain hypoperfusion and reperfusion (RE) injury. Pial microcirculation of male Wistar rats was visualized by fluorescence microscopy through a closed cranial window. Hypoperfusion was induced by bilateral common carotid artery occlusion (BCCAO, 30 min); thereafter, pial microcirculation was observed for 60 min. Arteriolar diameter, permeability increase, leukocyte adhesion to venular walls, perfused capillary length (PCL), and capillary red blood cell velocity (V(RBC) ) were investigated by computerized methods. Melatonin (0.5, 1, 2 mg/kg b.w.) was intravenously administered 10 min before BCCAO and at the beginning of RE. Pial arterioles were classified in five orders according to diameter, length, and branchings. In control group, BCCAO caused decrease in order 2 arteriole diameter (by 17.5 ± 3.0% of baseline) that was reduced by 11.8 ± 1.2% of baseline at the end of RE, accompanied by marked leakage and leukocyte adhesion. PCL and capillary V(RBC) decreased. At the end of BCCAO, melatonin highest dosage caused order 2 arteriole diameter reduction by 4.6 ± 2.0% of baseline. At RE, melatonin at the lower dosages caused different arteriolar responses. The highest dosage caused dilation in order 2 arteriole by 8.0 ± 1.5% of baseline, preventing leakage and leukocyte adhesion, while PCL and V(RBC) increased. Luzindole (4 mg/kg b.w.) prior to melatonin caused order 2 arteriole constriction by 12.0 ± 1.5% of baseline at RE, while leakage, leukocyte adhesion, PCL and V(RBC) were not affected. Prazosin (1 mg/kg b.w.) prior to melatonin did not significantly change melatonin's effects. In conclusion, melatonin caused different responses during hypoperfusion and RE, modulating pial arteriolar tone likely by MT1 and MT2 melatonin receptors while preventing blood-brain barrier changes through its free radical scavenging action.

Rat pial microvascular responses to melatonin during bilateral common carotid artery occlusion and reperfusion

Dominga Lapi
Primo
;
Emilio Cardaci;
2011-01-01

Abstract

The present study assessed the in vivo rat pial microvascular responses induced by melatonin during brain hypoperfusion and reperfusion (RE) injury. Pial microcirculation of male Wistar rats was visualized by fluorescence microscopy through a closed cranial window. Hypoperfusion was induced by bilateral common carotid artery occlusion (BCCAO, 30 min); thereafter, pial microcirculation was observed for 60 min. Arteriolar diameter, permeability increase, leukocyte adhesion to venular walls, perfused capillary length (PCL), and capillary red blood cell velocity (V(RBC) ) were investigated by computerized methods. Melatonin (0.5, 1, 2 mg/kg b.w.) was intravenously administered 10 min before BCCAO and at the beginning of RE. Pial arterioles were classified in five orders according to diameter, length, and branchings. In control group, BCCAO caused decrease in order 2 arteriole diameter (by 17.5 ± 3.0% of baseline) that was reduced by 11.8 ± 1.2% of baseline at the end of RE, accompanied by marked leakage and leukocyte adhesion. PCL and capillary V(RBC) decreased. At the end of BCCAO, melatonin highest dosage caused order 2 arteriole diameter reduction by 4.6 ± 2.0% of baseline. At RE, melatonin at the lower dosages caused different arteriolar responses. The highest dosage caused dilation in order 2 arteriole by 8.0 ± 1.5% of baseline, preventing leakage and leukocyte adhesion, while PCL and V(RBC) increased. Luzindole (4 mg/kg b.w.) prior to melatonin caused order 2 arteriole constriction by 12.0 ± 1.5% of baseline at RE, while leakage, leukocyte adhesion, PCL and V(RBC) were not affected. Prazosin (1 mg/kg b.w.) prior to melatonin did not significantly change melatonin's effects. In conclusion, melatonin caused different responses during hypoperfusion and RE, modulating pial arteriolar tone likely by MT1 and MT2 melatonin receptors while preventing blood-brain barrier changes through its free radical scavenging action.
2011
Lapi, Dominga; Vagnani, Sabrina; Cardaci, Emilio; Paterni, Marco; Colantuoni, Antonio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1077511
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact