Nonlinear optical processes, such as harmonic generation, are of great interest for various applications, e.g., microscopy, therapy, and frequency conversion. However, high-order harmonic conversion is typically much less efficient than low-order, due to the weak intrinsic response of the higher-order nonlinear processes. Here we report ultra-strong optical nonlinearities in monolayer MoS2 (1L-MoS2): the third harmonic is 30 times stronger than the second, and the fourth is comparable to the second. The third harmonic generation efficiency for 1L-MoS2 is approximately three times higher than that for graphene, which was reported to have a large χ (3). We explain this by calculating the nonlinear response functions of 1L-MoS2 with a continuum-model Hamiltonian and quantum mechanical diagrammatic perturbation theory, highlighting the role of trigonal warping. A similar effect is expected in all other transition-metal dichalcogenides. Our results pave the way for efficient harmonic generation based on layered materials for applications such as microscopy and imaging.
Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers
Polini M.;
2017-01-01
Abstract
Nonlinear optical processes, such as harmonic generation, are of great interest for various applications, e.g., microscopy, therapy, and frequency conversion. However, high-order harmonic conversion is typically much less efficient than low-order, due to the weak intrinsic response of the higher-order nonlinear processes. Here we report ultra-strong optical nonlinearities in monolayer MoS2 (1L-MoS2): the third harmonic is 30 times stronger than the second, and the fourth is comparable to the second. The third harmonic generation efficiency for 1L-MoS2 is approximately three times higher than that for graphene, which was reported to have a large χ (3). We explain this by calculating the nonlinear response functions of 1L-MoS2 with a continuum-model Hamiltonian and quantum mechanical diagrammatic perturbation theory, highlighting the role of trigonal warping. A similar effect is expected in all other transition-metal dichalcogenides. Our results pave the way for efficient harmonic generation based on layered materials for applications such as microscopy and imaging.File | Dimensione | Formato | |
---|---|---|---|
Polini_1077593.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.