We develop a microscopic large-N theory of electron-electron interaction corrections to multilegged Feynman diagrams describing second- and third-order non-linear-response functions. Our theory, which reduces to the well-known random-phase approximation in the linear-response limit, is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order non-linear-response functions of an interacting two-dimensional (2D) gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved by virtue of the finiteness of the quasihomogeneous second-order nonlinear response of this inversion-symmetric 2D material.

Theory of plasmonic effects in nonlinear optics: The case of graphene

Polini M.
Ultimo
2017-01-01

Abstract

We develop a microscopic large-N theory of electron-electron interaction corrections to multilegged Feynman diagrams describing second- and third-order non-linear-response functions. Our theory, which reduces to the well-known random-phase approximation in the linear-response limit, is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order non-linear-response functions of an interacting two-dimensional (2D) gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved by virtue of the finiteness of the quasihomogeneous second-order nonlinear response of this inversion-symmetric 2D material.
2017
Rostami, H.; Katsnelson, M. I.; Polini, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1077603
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact