The ultimate limit of control of light at the nanoscale is the atomic scale. By stacking multiple layers of graphene on hexagonal boron nitride (h-BN), heterostructures with unique nanophotonic properties can be constructed, where the distance between plasmonic materials can be controlled with atom-scale precision. Here we show how an atomically thick tunable quantum tunnelling device can be used as a building block for quantum plasmonics. The device consists of two layers of graphene separated by 1 nm (three monolayers) of h-BN, and a bias voltage between the layers generates an electron gas coupled to a hole gas. We show that, even though its total charge is zero, this system is capable of supporting propagating graphene plasmons.

Propagating Plasmons in a Charge-Neutral Quantum Tunneling Transistor

Polini M.;
2017-01-01

Abstract

The ultimate limit of control of light at the nanoscale is the atomic scale. By stacking multiple layers of graphene on hexagonal boron nitride (h-BN), heterostructures with unique nanophotonic properties can be constructed, where the distance between plasmonic materials can be controlled with atom-scale precision. Here we show how an atomically thick tunable quantum tunnelling device can be used as a building block for quantum plasmonics. The device consists of two layers of graphene separated by 1 nm (three monolayers) of h-BN, and a bias voltage between the layers generates an electron gas coupled to a hole gas. We show that, even though its total charge is zero, this system is capable of supporting propagating graphene plasmons.
2017
Woessner, A.; Misra, A.; Cao, Y.; Torre, I.; Mishchenko, A.; Lundeberg, M. B.; Watanabe, K.; Taniguchi, T.; Polini, M.; Novoselov, K. S.; Koppens, F. H. L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1077692
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact