We address the challenging open problem of learning an effective latent space for symbolic music data in generative music modeling. We focus on leveraging adversarial regularization as a flexible and natural mean to imbue variational autoencoders with context information concerning music genre and style. Through the paper, we show how Gaussian mixtures taking into account music metadata information can be used as an effective prior for the autoencoder latent space, introducing the first Music Adversarial Autoencoder (MusAE). The empirical analysis on a large scale benchmark shows that our model has a higher reconstruction accuracy than state-of-the-art models based on standard variational autoencoders. It is also able to create realistic interpolations between two musical sequences, smoothly changing the dynamics of the different tracks. Experiments show that the model can organise its latent space accordingly to low-level properties of the musical pieces, as well as to embed into the latent variables the high-level genre information injected from the prior distribution to increase its overall performance. This allows us to perform changes to the generated pieces in a principled way.

Learning Style-Aware Symbolic Music Representations by Adversarial Autoencoders

Andrea Valenti;Antonio Carta;Davide Bacciu
2020-01-01

Abstract

We address the challenging open problem of learning an effective latent space for symbolic music data in generative music modeling. We focus on leveraging adversarial regularization as a flexible and natural mean to imbue variational autoencoders with context information concerning music genre and style. Through the paper, we show how Gaussian mixtures taking into account music metadata information can be used as an effective prior for the autoencoder latent space, introducing the first Music Adversarial Autoencoder (MusAE). The empirical analysis on a large scale benchmark shows that our model has a higher reconstruction accuracy than state-of-the-art models based on standard variational autoencoders. It is also able to create realistic interpolations between two musical sequences, smoothly changing the dynamics of the different tracks. Experiments show that the model can organise its latent space accordingly to low-level properties of the musical pieces, as well as to embed into the latent variables the high-level genre information injected from the prior distribution to increase its overall performance. This allows us to perform changes to the generated pieces in a principled way.
2020
978-1-64368-100-9
File in questo prodotto:
File Dimensione Formato  
FAIA-325-FAIA200265.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 556.87 kB
Formato Adobe PDF
556.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1078310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact