Training RNNs to learn long-term dependencies is difficult due to vanishing gradients. We explore an alternative solution based on explicit memorization using linear autoencoders for sequences, which allows to maximize the short-term memory and that can be solved with a closed-form solution without backpropagation. We introduce an initialization schema that pretrains the weights of a recurrent neural network to approximate the linear autoencoder of the input sequences and we show how such pretraining can better support solving hard classification tasks with long sequences. We test our approach on sequential and permuted MNIST. We show that the proposed approach achieves a much lower reconstruction error for long sequences and a better gradient propagation during the finetuning phase.

Short-Term Memory Optimization in Recurrent Neural Networks by Autoencoder-based Initialization

Antonio Carta;Alessandro Sperduti;Davide Bacciu
2020-01-01

Abstract

Training RNNs to learn long-term dependencies is difficult due to vanishing gradients. We explore an alternative solution based on explicit memorization using linear autoencoders for sequences, which allows to maximize the short-term memory and that can be solved with a closed-form solution without backpropagation. We introduce an initialization schema that pretrains the weights of a recurrent neural network to approximate the linear autoencoder of the input sequences and we show how such pretraining can better support solving hard classification tasks with long sequences. We test our approach on sequential and permuted MNIST. We show that the proposed approach achieves a much lower reconstruction error for long sequences and a better gradient propagation during the finetuning phase.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1078316
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact