Time-dependent reliability assessment is a crucial aspect of the decision process for rehabilitation of existing reinforced concrete structures. Since the assessment strongly depends on degradation of materials with time, the paper focuses on the influence of corrosion in reinforcing steel on time-reliability curves of relevant reinforced concrete (r.c.) structures, built in Italy in the 1960s, belonging to different building categories. To realistically represent the probability distribution functions (pdf s) of the relevant properties of reinforcing steel and concrete commonly adopted in the 1960s, stochastic models for steel yielding and concrete compressive strength have been derived, by means of a suitable cluster analysis, from secondary databases of test results gathered at that time in Italy on concrete and steel rebar specimens. This cluster analysis, based on Gaussian mixture models, provides a powerful tool to "objectively" extract material classes and associated probability density functions from databases of experimental test results. In the study, different degradation conditions and several reinforcing steel and concrete classes are considered, also aiming to scrutinize their influence on the time-dependent reliability curves. Finally, to stress the significance of the study, the time-dependent reliability curves so obtained are critically examined and discussed also in comparison with the target reliability levels currently adopted in the Eurocodes.

Influence of reinforcing steel corrosion on life cycle reliability assessment of existing R.C. Buildings

Croce P.
;
Formichi P.
;
Landi F.
2020-01-01

Abstract

Time-dependent reliability assessment is a crucial aspect of the decision process for rehabilitation of existing reinforced concrete structures. Since the assessment strongly depends on degradation of materials with time, the paper focuses on the influence of corrosion in reinforcing steel on time-reliability curves of relevant reinforced concrete (r.c.) structures, built in Italy in the 1960s, belonging to different building categories. To realistically represent the probability distribution functions (pdf s) of the relevant properties of reinforcing steel and concrete commonly adopted in the 1960s, stochastic models for steel yielding and concrete compressive strength have been derived, by means of a suitable cluster analysis, from secondary databases of test results gathered at that time in Italy on concrete and steel rebar specimens. This cluster analysis, based on Gaussian mixture models, provides a powerful tool to "objectively" extract material classes and associated probability density functions from databases of experimental test results. In the study, different degradation conditions and several reinforcing steel and concrete classes are considered, also aiming to scrutinize their influence on the time-dependent reliability curves. Finally, to stress the significance of the study, the time-dependent reliability curves so obtained are critically examined and discussed also in comparison with the target reliability levels currently adopted in the Eurocodes.
2020
Croce, P.; Formichi, P.; Landi, F.
File in questo prodotto:
File Dimensione Formato  
buildings-10-00099-v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 8.26 MB
Formato Adobe PDF
8.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1079533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact