We consider polygonal billiards with collisions contracting the reflection angle towards the normal to the boundary of the table. In previous work, we proved that such billiards have a finite number of ergodic SRB measures supported on hyperbolic generalized attractors. Here we study the relation of these measures with the ergodic absolutely continuous invariant probabilities (acips) of the slap map, the 1-dimensional map obtained from the billiard map when the angle of reflection is set equal to zero. We prove that if a convex polygon satisfies a generic condition called (*), and the reflection law has a Lipschitz constant sufficiently small, then there exists a one-to-one correspondence between the ergodic SRB measures of the billiard map and the ergodic acips of the corresponding slap map, and moreover that the number of Bernoulli components of each ergodic SRB measure equals the number of the exact components of the corresponding ergodic acip. The case of billiards in regular polygons and triangles is studied in detail.
Hyperbolic Polygonal Billiards Close to 1-Dimensional Piecewise Expanding Maps
Del Magno G.
;
2021-01-01
Abstract
We consider polygonal billiards with collisions contracting the reflection angle towards the normal to the boundary of the table. In previous work, we proved that such billiards have a finite number of ergodic SRB measures supported on hyperbolic generalized attractors. Here we study the relation of these measures with the ergodic absolutely continuous invariant probabilities (acips) of the slap map, the 1-dimensional map obtained from the billiard map when the angle of reflection is set equal to zero. We prove that if a convex polygon satisfies a generic condition called (*), and the reflection law has a Lipschitz constant sufficiently small, then there exists a one-to-one correspondence between the ergodic SRB measures of the billiard map and the ergodic acips of the corresponding slap map, and moreover that the number of Bernoulli components of each ergodic SRB measure equals the number of the exact components of the corresponding ergodic acip. The case of billiards in regular polygons and triangles is studied in detail.File | Dimensione | Formato | |
---|---|---|---|
billiards_revision_bis.pdf
accesso aperto
Descrizione: articolo
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
897.1 kB
Formato
Adobe PDF
|
897.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.