Objective: This work presents a device for non-invasive wound parameters assessment, designed to overcome the drawbacks of traditional methods, which are mostly rough, inaccurate, and painful for the patient. The device estimates the morphological parameters of the wound and provides augmented reality (AR) visual feedback on the wound healing status by projecting the wound border acquired during the last examination, thus improving doctor-patient communication. Methods: An accurate 3D model of the wound is created by stereophotogrammetry and refined through self-organizing maps. The 3D model is used to estimate physical parameters for wound healing assessment and integrates AR functionalities based on a miniaturized projector. The physical parameter estimation functionalities are evaluated in terms of precision, accuracy, inter-operator variability, and repeatability, whereas AR wound border projection is evaluated in terms of accuracy on the same phantom. Results: The accuracy and precision of the device are respectively 2% and 1.2% for linear parameters, and 1.7% and 1.3% for area and volume. The AR projection shows an error distance <1 mm. No statistical difference was found between the measurements of different operators. Conclusion: The device has proven to be an objective and non-operator-dependent tool for assessing the morphological parameters of the wound. Comparison with non-contact devices shows improved accuracy, offering reliable and rigorous measurements. Clinical Impact: Chronic wounds represent a significant health problem with high recurrence rates due to the ageing of the population and diseases such as diabetes and obesity. The device presented in this work provides an easy-to-use non-invasive tool to obtain useful information for treatment.

Monitoring Wound Healing with Contactless Measurements and Augmented Reality

Mamone V.;Ferrari M.;Ferrari V.
2020-01-01

Abstract

Objective: This work presents a device for non-invasive wound parameters assessment, designed to overcome the drawbacks of traditional methods, which are mostly rough, inaccurate, and painful for the patient. The device estimates the morphological parameters of the wound and provides augmented reality (AR) visual feedback on the wound healing status by projecting the wound border acquired during the last examination, thus improving doctor-patient communication. Methods: An accurate 3D model of the wound is created by stereophotogrammetry and refined through self-organizing maps. The 3D model is used to estimate physical parameters for wound healing assessment and integrates AR functionalities based on a miniaturized projector. The physical parameter estimation functionalities are evaluated in terms of precision, accuracy, inter-operator variability, and repeatability, whereas AR wound border projection is evaluated in terms of accuracy on the same phantom. Results: The accuracy and precision of the device are respectively 2% and 1.2% for linear parameters, and 1.7% and 1.3% for area and volume. The AR projection shows an error distance <1 mm. No statistical difference was found between the measurements of different operators. Conclusion: The device has proven to be an objective and non-operator-dependent tool for assessing the morphological parameters of the wound. Comparison with non-contact devices shows improved accuracy, offering reliable and rigorous measurements. Clinical Impact: Chronic wounds represent a significant health problem with high recurrence rates due to the ageing of the population and diseases such as diabetes and obesity. The device presented in this work provides an easy-to-use non-invasive tool to obtain useful information for treatment.
2020
Mamone, V.; Fonzo, M. D.; Esposito, N.; Ferrari, M.; Ferrari, V.
File in questo prodotto:
File Dimensione Formato  
09050807.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1081023
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact