Estrogens exert rapid, extranuclear effects by their action on the plasma membrane estrogen receptors (mERs). Gα protein associated with the cell membrane is involved in many important processes regulated by estrogens. However, the Gα’s role in the mER-mediated signaling and the signaling pathways involved are poorly understood. This review aims to outline the Gα’s role in the mER-mediated signaling. Immunoblotting, immunofluorescence, co-immunoprecipitation, and RNA interference were carried out using vascular endothelial cells (ECs) and human breast carcinoma cell lines as experimental models. Electrophysiology and immunocytochemistry were carried out using guinea pigs as animal models. Recent advances suggest that the signaling of mERα through Gα is required for vascular EC migration or endothelial H2S release, while Gα13 is involved in estrogen-induced breast cancer cell invasion. Besides, the Gαq-coupled PLC–PKC–PKA pathway is critical for the neural regulation of energy homeostasis. This review summarizes the contributions of Gα to mER-mediated signaling, including cardiovascular protection, breast cancer metastasis, neural regulation of homeostatic functions, and osteogenesis.

The role of Gα protein signaling in the membrane estrogen receptor-mediated signaling

Wu L.;Simoncini T.
Penultimo
Writing – Review & Editing
;
2021-01-01

Abstract

Estrogens exert rapid, extranuclear effects by their action on the plasma membrane estrogen receptors (mERs). Gα protein associated with the cell membrane is involved in many important processes regulated by estrogens. However, the Gα’s role in the mER-mediated signaling and the signaling pathways involved are poorly understood. This review aims to outline the Gα’s role in the mER-mediated signaling. Immunoblotting, immunofluorescence, co-immunoprecipitation, and RNA interference were carried out using vascular endothelial cells (ECs) and human breast carcinoma cell lines as experimental models. Electrophysiology and immunocytochemistry were carried out using guinea pigs as animal models. Recent advances suggest that the signaling of mERα through Gα is required for vascular EC migration or endothelial H2S release, while Gα13 is involved in estrogen-induced breast cancer cell invasion. Besides, the Gαq-coupled PLC–PKC–PKA pathway is critical for the neural regulation of energy homeostasis. This review summarizes the contributions of Gα to mER-mediated signaling, including cardiovascular protection, breast cancer metastasis, neural regulation of homeostatic functions, and osteogenesis.
2021
Zheng, S.; Wu, L.; Fan, C.; Lin, J.; Zhang, Y.; Simoncini, T.; Fu, X.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1081081
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact