Purpose: The aim of this study was to evaluate the feasibility of attenuation correction (AC) for cardiac 18F-labelled fluorodeoxyglucose (FDG) positron emission tomography (PET) using MR-based attenuation maps. Methods: We included 23 patients with no known cardiac history undergoing whole-body FDG PET/CT imaging for oncological indications on a PET/CT scanner using time-of-flight (TOF) and subsequent whole-body PET/MR imaging on an investigational hybrid PET/MRI scanner. Data sets from PET/MRI (with and without TOF) were reconstructed using MR AC and semi-quantitative segmental (20-segment model) myocardial tracer uptake (per cent of maximum) and compared to PET/CT which was reconstructed using CT AC and served as standard of reference. Results: Excellent correlations were found for regional uptake values between PET/CT and PET/MRI with TOF (n = 460 segments in 23 patients; r = 0.913; p < 0.0001) with narrow Bland-Altman limits of agreement (−8.5 to +12.6 %). Correlation coefficients were slightly lower between PET/CT and PET/MRI without TOF (n = 460 segments in 23 patients; r = 0.851; p < 0.0001) with broader Bland-Altman limits of agreement (−12.5 to +15.0 %). PET/MRI with and without TOF showed minimal underestimation of tracer uptake (−2.08 and −1.29 %, respectively), compared to PET/CT. Conclusion: Relative myocardial FDG uptake obtained from MR-based attenuation corrected FDG PET is highly comparable to standard CT-based attenuation corrected FDG PET, suggesting interchangeability of both AC techniques.

MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction

Liga R.
Co-primo
;
2015-01-01

Abstract

Purpose: The aim of this study was to evaluate the feasibility of attenuation correction (AC) for cardiac 18F-labelled fluorodeoxyglucose (FDG) positron emission tomography (PET) using MR-based attenuation maps. Methods: We included 23 patients with no known cardiac history undergoing whole-body FDG PET/CT imaging for oncological indications on a PET/CT scanner using time-of-flight (TOF) and subsequent whole-body PET/MR imaging on an investigational hybrid PET/MRI scanner. Data sets from PET/MRI (with and without TOF) were reconstructed using MR AC and semi-quantitative segmental (20-segment model) myocardial tracer uptake (per cent of maximum) and compared to PET/CT which was reconstructed using CT AC and served as standard of reference. Results: Excellent correlations were found for regional uptake values between PET/CT and PET/MRI with TOF (n = 460 segments in 23 patients; r = 0.913; p < 0.0001) with narrow Bland-Altman limits of agreement (−8.5 to +12.6 %). Correlation coefficients were slightly lower between PET/CT and PET/MRI without TOF (n = 460 segments in 23 patients; r = 0.851; p < 0.0001) with broader Bland-Altman limits of agreement (−12.5 to +15.0 %). PET/MRI with and without TOF showed minimal underestimation of tracer uptake (−2.08 and −1.29 %, respectively), compared to PET/CT. Conclusion: Relative myocardial FDG uptake obtained from MR-based attenuation corrected FDG PET is highly comparable to standard CT-based attenuation corrected FDG PET, suggesting interchangeability of both AC techniques.
2015
Vontobel, J.; Liga, R.; Possner, M.; Clerc, O. F.; Mikulicic, F.; Veit-Haibach, P.; ter Voert, E. E. G. W.; Fuchs, T. A.; Stehli, J.; Pazhenkottil, A....espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1084746
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 37
social impact