Let (M,g) a compact Riemannian n-dimensional manifold. It is well know that, under certain hypothesis, in the conformal class of g there are scalar-flat metrics that have the boundary of M as a constant mean curvature hypersurface. Also, under certain hypothesis, it is known that these metrics are a compact set. In this paper we prove that, both in the case of umbilic and non-umbilic boundary, if we linearly perturb the mean curvature term hg with a negative smooth function, the set of solutions of Yamabe problem is still a compact set.

Compactness results for linearly perturbed Yamabe problem on manifolds with boundary

Ghimenti, Marco
;
Micheletti, Anna Maria
2021-01-01

Abstract

Let (M,g) a compact Riemannian n-dimensional manifold. It is well know that, under certain hypothesis, in the conformal class of g there are scalar-flat metrics that have the boundary of M as a constant mean curvature hypersurface. Also, under certain hypothesis, it is known that these metrics are a compact set. In this paper we prove that, both in the case of umbilic and non-umbilic boundary, if we linearly perturb the mean curvature term hg with a negative smooth function, the set of solutions of Yamabe problem is still a compact set.
2021
Ghimenti, Marco; Micheletti, Anna Maria
File in questo prodotto:
File Dimensione Formato  
7_compattezza-perturbazione-3-correctedproof.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 453.32 kB
Formato Adobe PDF
453.32 kB Adobe PDF Visualizza/Apri
compattezza-perturbazione-3.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 490.03 kB
Formato Adobe PDF
490.03 kB Adobe PDF Visualizza/Apri
DCDS.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 453.96 kB
Formato Adobe PDF
453.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1086470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact