A finite-volume hyperbolic 3–manifold geometrically bounds if it is the geodesic boundary of a finite-volume hyperbolic 4–manifold. We construct here an example of a noncompact, finite-volume hyperbolic 3–manifold that geometrically bounds. The 3–manifold is the complement of a link with eight components, and its volume is roughly equal to 29:311.

A geometrically bounding hyperbolic link complement

Slavich L.
2015-01-01

Abstract

A finite-volume hyperbolic 3–manifold geometrically bounds if it is the geodesic boundary of a finite-volume hyperbolic 4–manifold. We construct here an example of a noncompact, finite-volume hyperbolic 3–manifold that geometrically bounds. The 3–manifold is the complement of a link with eight components, and its volume is roughly equal to 29:311.
2015
Slavich, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1088010
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact