Electromagnetic fields address configurational forces in a natural way through an energy–stress tensor, which reduces to the Maxwell tensor in the simplest case. This tensor is related to physical forces and to the Cauchy traction in a continuum. Material forces, as opposed to physical forces, are of a different nature as they act upon a site of a continuum where the possible material inhomogeneity is located. A material energy–stress tensor, which is reminiscent of the Maxwell stress, is associated with these forces. Through appropriate balance laws, a material momentum is also associated with material forces. The material momentum is of particular interest in electromagnetic materials as it is intimately related to the pseudomomentum of light [Peierls in Highlights of Condensed Matter Physics, pp. 237–255 (1985) and in Surprises in Theoretical Physics, pp. 91–99 (1979); Thellung in Ann. Phys. 127, 289–301 (1980)]. The balance law for the material momentum can be derived either from the classical physical laws or independently of them. This derivation, which is based on the material electromagnetic potentials and the related gauge transformations, is discussed and commented on for an electromagnetic body.

Material Electromagnetic Fields and Material Forces

TRIMARCO, CARMINE
2007-01-01

Abstract

Electromagnetic fields address configurational forces in a natural way through an energy–stress tensor, which reduces to the Maxwell tensor in the simplest case. This tensor is related to physical forces and to the Cauchy traction in a continuum. Material forces, as opposed to physical forces, are of a different nature as they act upon a site of a continuum where the possible material inhomogeneity is located. A material energy–stress tensor, which is reminiscent of the Maxwell stress, is associated with these forces. Through appropriate balance laws, a material momentum is also associated with material forces. The material momentum is of particular interest in electromagnetic materials as it is intimately related to the pseudomomentum of light [Peierls in Highlights of Condensed Matter Physics, pp. 237–255 (1985) and in Surprises in Theoretical Physics, pp. 91–99 (1979); Thellung in Ann. Phys. 127, 289–301 (1980)]. The balance law for the material momentum can be derived either from the classical physical laws or independently of them. This derivation, which is based on the material electromagnetic potentials and the related gauge transformations, is discussed and commented on for an electromagnetic body.
2007
Trimarco, Carmine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/108990
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact