In this paper a notion of approximation of order s (called s-equivalence) between two closed subanalytic subsets of R^n along a common submanifold is introduced. It is proved that the normal cone N_X(A) to A along X is 1-equivalent to A along X, assuming that X is a stratum of a stratification of A satisfying Verdier's condition (w). Furthermore the normal cone is shown to be a complete invariant for the classes of 1-equivalence of subanalytic sets along a common stratum.

Approximation of subanalytic sets by normal cones

FORTUNA, ELISABETTA;
2007-01-01

Abstract

In this paper a notion of approximation of order s (called s-equivalence) between two closed subanalytic subsets of R^n along a common submanifold is introduced. It is proved that the normal cone N_X(A) to A along X is 1-equivalent to A along X, assuming that X is a stratum of a stratification of A satisfying Verdier's condition (w). Furthermore the normal cone is shown to be a complete invariant for the classes of 1-equivalence of subanalytic sets along a common stratum.
2007
Ferrarotti, M; Fortuna, Elisabetta; Wilson, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/108999
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact