We extend the principle of comparison with cones introduced by Crandall, Evans and Gariepy in [12] for the Minimizing Lipschitz Extension Problem to a wide class of supremal functionals. This gives a geometrical characterization of the absolute minimizers (optimal solutions whose minimality is local). Some application to the stability of absolute minimizers with respect to the Gamma-convergence is given. A variation of the basic idea also allows to characterize the minimal Lipschitz extensions in length metric spaces.

Principles of comparison with distance functions for absolute minimizers

DE PASCALE, LUIGI;
2007

Abstract

We extend the principle of comparison with cones introduced by Crandall, Evans and Gariepy in [12] for the Minimizing Lipschitz Extension Problem to a wide class of supremal functionals. This gives a geometrical characterization of the absolute minimizers (optimal solutions whose minimality is local). Some application to the stability of absolute minimizers with respect to the Gamma-convergence is given. A variation of the basic idea also allows to characterize the minimal Lipschitz extensions in length metric spaces.
Champion, T; DE PASCALE, Luigi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/109488
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 32
social impact