his paper presents a mechanical model developed for the simulation of the monotonic behaviour of Steel frames with Reinforced Concrete infill Walls (SRCW). In particular, it deals with a specific typology of SRCW, obtained from the classical one through the interposition of dissipative elements in the columns and by stiffening and shaping the steel frame’s corners in a way to prevent the brittle failure of the concrete in compression. This system has demonstrated in past researches to be able to overcome the typical problems of SRCWs and to assure, through a capacity design approach, a global ductile behavior. The selection of the main components to be included in the model is carried out on the base of the analysis of the available experimental tests and of the results of accurate 3D Finite Element model analyses. The behaviour of each component is represented though consolidated models present in the current state-of-the-art and, where necessary, calibrated using the results of the experimental and numerical analyses. The capacity of the proposed mechanical model in representing the global behaviour of the SRCWs is finally demonstrated comparing the results in terms of force–displacement curves with the ones obtained through the refined 3D Finite Element models.

Mechanical model of steel frames with reinforced concrete infill walls

Francesco Morelli
;
Ivan Panzera;Walter Salvatore
2021-01-01

Abstract

his paper presents a mechanical model developed for the simulation of the monotonic behaviour of Steel frames with Reinforced Concrete infill Walls (SRCW). In particular, it deals with a specific typology of SRCW, obtained from the classical one through the interposition of dissipative elements in the columns and by stiffening and shaping the steel frame’s corners in a way to prevent the brittle failure of the concrete in compression. This system has demonstrated in past researches to be able to overcome the typical problems of SRCWs and to assure, through a capacity design approach, a global ductile behavior. The selection of the main components to be included in the model is carried out on the base of the analysis of the available experimental tests and of the results of accurate 3D Finite Element model analyses. The behaviour of each component is represented though consolidated models present in the current state-of-the-art and, where necessary, calibrated using the results of the experimental and numerical analyses. The capacity of the proposed mechanical model in representing the global behaviour of the SRCWs is finally demonstrated comparing the results in terms of force–displacement curves with the ones obtained through the refined 3D Finite Element models.
2021
Morelli, Francesco; Panzera, Ivan; Salvatore, Walter
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1095051
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact