High-throughput sequencing technologies have led to explosive growth of genomic databases; one of which will soon reach hundreds of terabytes. For many applications we want to build and store indexes of these databases but constructing such indexes is a challenge. Fortunately, many of these genomic databases are highly-repetitive - a characteristic that can be exploited to ease the computation of the Burrows-Wheeler Transform (BWT), which underlies many popular indexes. In this paper, we introduce a preprocessing algorithm, referred to as prefix-free parsing, that takes a text T as input, and in one-pass generates a dictionary D and a parse P of T with the property that the BWT of T can be constructed from D and P using workspace proportional to their total size and O(|T|)-time. Our experiments show that D and P are significantly smaller than T in practice, and thus, can fit in a reasonable internal memory even when T is very large. In particular, we show that with prefix-free parsing we can build an 131-MB run-length compressed FM-index (restricted to support only counting and not locating) for 1000 copies of human chromosome 19 in 2 h using 21 GB of memory, suggesting that we can build a 6.73 GB index for 1000 complete human-genome haplotypes in approximately 102 h using about 1 TB of memory.

Prefix-free parsing for building big BWTs

Manzini G.;
2019-01-01

Abstract

High-throughput sequencing technologies have led to explosive growth of genomic databases; one of which will soon reach hundreds of terabytes. For many applications we want to build and store indexes of these databases but constructing such indexes is a challenge. Fortunately, many of these genomic databases are highly-repetitive - a characteristic that can be exploited to ease the computation of the Burrows-Wheeler Transform (BWT), which underlies many popular indexes. In this paper, we introduce a preprocessing algorithm, referred to as prefix-free parsing, that takes a text T as input, and in one-pass generates a dictionary D and a parse P of T with the property that the BWT of T can be constructed from D and P using workspace proportional to their total size and O(|T|)-time. Our experiments show that D and P are significantly smaller than T in practice, and thus, can fit in a reasonable internal memory even when T is very large. In particular, we show that with prefix-free parsing we can build an 131-MB run-length compressed FM-index (restricted to support only counting and not locating) for 1000 copies of human chromosome 19 in 2 h using 21 GB of memory, suggesting that we can build a 6.73 GB index for 1000 complete human-genome haplotypes in approximately 102 h using about 1 TB of memory.
2019
Boucher, C.; Gagie, T.; Kuhnle, A.; Langmead, B.; Manzini, G.; Mun, T.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1097607
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 33
social impact