Causality and the generalized laws of black hole thermodynamics imply a bound, known as the extit{Bekenstein--Hod universal bound}, on the information emission rate of a perturbed black hole. Using a time-domain ringdown analysis, we investigate whether remnant black holes produced by the coalescences observed by Advanced LIGO and Advanced Virgo obey this bound. We find that the bound is verified by the astrophysical black hole population with $94%$ probability, providing a first confirmation of the Bekenstein--Hod bound from black hole systems.
Bekenstein-Hod universal bound on information emission rate is obeyed by LIGO-Virgo binary black hole remnants
Gregorio Carullo
Primo
;Danny LaghiSecondo
;Walter Del Pozzo
2021-01-01
Abstract
Causality and the generalized laws of black hole thermodynamics imply a bound, known as the extit{Bekenstein--Hod universal bound}, on the information emission rate of a perturbed black hole. Using a time-domain ringdown analysis, we investigate whether remnant black holes produced by the coalescences observed by Advanced LIGO and Advanced Virgo obey this bound. We find that the bound is verified by the astrophysical black hole population with $94%$ probability, providing a first confirmation of the Bekenstein--Hod bound from black hole systems.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.