In modern structural codes, the reference value of the snow load on roofs is commonly given as the product of the characteristic value of the ground snow load at the construction site multiplied by the shape coefficient. The shape coefficient is a conversion factor which depends on the roof geometry, its wind exposure, and its thermal properties. In the Eurocodes, the characteristic roof snow load is either defined as the value corresponding to an annual probability of exceedance of 0.02 or as a nominal value. In this paper, an improved methodology to evaluate the roof snow load characterized by a given probability of exceedance (e.g., p=0.02 in one year) is presented based on appropriate probability density functions for ground snow loads and shape coefficients, duly taking into account the influence of the roof’s geometry and its exposure to wind. In that context, the curves for the design values of the shape coefficients are provided as a function of the coefficient of variation (COVg) of the yearly maxima of the snow load on the ground expected at a given site, considering three relevant wind exposure conditions: sheltered or non-exposed, semisheltered or normal, and windswept or exposed. The design shape coefficients for flat and pitched roofs, obtained considering roof snow load measurements collected in Europe during the European Snow Load Research Project (ESLRP) and in Norway, are finally compared with the roof snow load provisions given in the relevant existing Eurocode EN1991-1-3: 2003 and in the new version being developed (prEN1991-1-3: 2020) for the “second generation” of the Eurocodes.

Probabilistic assessment of roof snow load and the calibration of shape coefficients in the eurocodes

Croce P.
;
Formichi P.;Landi F.
2021-01-01

Abstract

In modern structural codes, the reference value of the snow load on roofs is commonly given as the product of the characteristic value of the ground snow load at the construction site multiplied by the shape coefficient. The shape coefficient is a conversion factor which depends on the roof geometry, its wind exposure, and its thermal properties. In the Eurocodes, the characteristic roof snow load is either defined as the value corresponding to an annual probability of exceedance of 0.02 or as a nominal value. In this paper, an improved methodology to evaluate the roof snow load characterized by a given probability of exceedance (e.g., p=0.02 in one year) is presented based on appropriate probability density functions for ground snow loads and shape coefficients, duly taking into account the influence of the roof’s geometry and its exposure to wind. In that context, the curves for the design values of the shape coefficients are provided as a function of the coefficient of variation (COVg) of the yearly maxima of the snow load on the ground expected at a given site, considering three relevant wind exposure conditions: sheltered or non-exposed, semisheltered or normal, and windswept or exposed. The design shape coefficients for flat and pitched roofs, obtained considering roof snow load measurements collected in Europe during the European Snow Load Research Project (ESLRP) and in Norway, are finally compared with the roof snow load provisions given in the relevant existing Eurocode EN1991-1-3: 2003 and in the new version being developed (prEN1991-1-3: 2020) for the “second generation” of the Eurocodes.
2021
Croce, P.; Formichi, P.; Landi, F.
File in questo prodotto:
File Dimensione Formato  
applsci-11-02984-v2.pdf

accesso aperto

Descrizione: Versione finale dell'editore
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.5 MB
Formato Adobe PDF
4.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1100392
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact