Since 1985, the thiazolidinedione pioglitazone has been widely used as an insulin sensitizer drug for type 2 diabetes mellitus (T2DM). Although fluid retention was early recognized as a safety concern, data from clinical trials have not provided conclusive evidence for a benefit or a harm on cardiac function, leaving the question unanswered. We reviewed the available evidence encompassing both in vitro and in vivo studies in tissues, isolated organs, animals and humans, including the evidence generated by major clinical trials. Despite the increased risk of hospitalization for heart failure due to fluid retention, pioglitazone is consistently associated with reduced risk of myocardial infarction and ischemic stroke both in primary and secondary prevention, without any proven direct harm on the myocardium. Moreover, it reduces atherosclerosis progression, in-stent restenosis after coronary stent implantation, progression rate from persistent to permanent atrial fibrillation, and reablation rate in diabetic patients with paroxysmal atrial fibrillation after catheter ablation. In fact, human and animal studies consistently report direct beneficial effects on cardiomyocytes electrophysiology, energetic metabolism, ischemia–reperfusion injury, cardiac remodeling, neurohormonal activation, pulmonary circulation and biventricular systo-diastolic functions. The mechanisms involved may rely either on anti-remodeling properties (endothelium protective, inflammation-modulating, anti-proliferative and anti-fibrotic properties) and/or on metabolic (adipose tissue metabolism, increased HDL cholesterol) and neurohormonal (renin–angiotensin–aldosterone system, sympathetic nervous system, and adiponectin) modulation of the cardiovascular system. With appropriate prescription and titration, pioglitazone remains a useful tool in the arsenal of the clinical diabetologist.

Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug

Nesti L.;Trico D.;Mengozzi A.;Natali A.
2021-01-01

Abstract

Since 1985, the thiazolidinedione pioglitazone has been widely used as an insulin sensitizer drug for type 2 diabetes mellitus (T2DM). Although fluid retention was early recognized as a safety concern, data from clinical trials have not provided conclusive evidence for a benefit or a harm on cardiac function, leaving the question unanswered. We reviewed the available evidence encompassing both in vitro and in vivo studies in tissues, isolated organs, animals and humans, including the evidence generated by major clinical trials. Despite the increased risk of hospitalization for heart failure due to fluid retention, pioglitazone is consistently associated with reduced risk of myocardial infarction and ischemic stroke both in primary and secondary prevention, without any proven direct harm on the myocardium. Moreover, it reduces atherosclerosis progression, in-stent restenosis after coronary stent implantation, progression rate from persistent to permanent atrial fibrillation, and reablation rate in diabetic patients with paroxysmal atrial fibrillation after catheter ablation. In fact, human and animal studies consistently report direct beneficial effects on cardiomyocytes electrophysiology, energetic metabolism, ischemia–reperfusion injury, cardiac remodeling, neurohormonal activation, pulmonary circulation and biventricular systo-diastolic functions. The mechanisms involved may rely either on anti-remodeling properties (endothelium protective, inflammation-modulating, anti-proliferative and anti-fibrotic properties) and/or on metabolic (adipose tissue metabolism, increased HDL cholesterol) and neurohormonal (renin–angiotensin–aldosterone system, sympathetic nervous system, and adiponectin) modulation of the cardiovascular system. With appropriate prescription and titration, pioglitazone remains a useful tool in the arsenal of the clinical diabetologist.
2021
Nesti, L.; Trico, D.; Mengozzi, A.; Natali, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1101113
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 41
social impact