In this paper we show that the rotational Smagorinsky model for turbulent flows, can be put, for a wide range of parameters in the setting of Bochner pseudo-monotone evolution equations. This allows to prove existence of weak solutions a) identifying a proper functional setting in weighted spaces and b) checking some easily verifiable assumptions, at fixed time. We also will discuss the critical role of the exponents present in the model (power of the distance function and power of the curl) for what concerns the application of the theory of pseudo-monotone operators.
On the existence of weak solutions for a family of unsteady rotational Smagorinsky models
Luigi C. Berselli;
2023-01-01
Abstract
In this paper we show that the rotational Smagorinsky model for turbulent flows, can be put, for a wide range of parameters in the setting of Bochner pseudo-monotone evolution equations. This allows to prove existence of weak solutions a) identifying a proper functional setting in weighted spaces and b) checking some easily verifiable assumptions, at fixed time. We also will discuss the critical role of the exponents present in the model (power of the distance function and power of the curl) for what concerns the application of the theory of pseudo-monotone operators.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ArXiv-Lomax-2107.00236.pdf
accesso aperto
Descrizione: https://arxiv.org/pdf/2107.00236.pdf
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
268.07 kB
Formato
Adobe PDF
|
268.07 kB | Adobe PDF | Visualizza/Apri |
pafa_Ber_Kalt_Lew_Ruz.pdf
solo utenti autorizzati
Descrizione: versione finale non editoriale
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
418.4 kB
Formato
Adobe PDF
|
418.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
pafa-finale.pdf
solo utenti autorizzati
Descrizione: bozze corrette
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
173 kB
Formato
Adobe PDF
|
173 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.