In this paper we show that the rotational Smagorinsky model for turbulent flows, can be put, for a wide range of parameters in the setting of Bochner pseudo-monotone evolution equations. This allows to prove existence of weak solutions a) identifying a proper functional setting in weighted spaces and b) checking some easily verifiable assumptions, at fixed time. We also will discuss the critical role of the exponents present in the model (power of the distance function and power of the curl) for what concerns the application of the theory of pseudo-monotone operators.

On the existence of weak solutions for a family of unsteady rotational Smagorinsky models

Luigi C. Berselli;
2023-01-01

Abstract

In this paper we show that the rotational Smagorinsky model for turbulent flows, can be put, for a wide range of parameters in the setting of Bochner pseudo-monotone evolution equations. This allows to prove existence of weak solutions a) identifying a proper functional setting in weighted spaces and b) checking some easily verifiable assumptions, at fixed time. We also will discuss the critical role of the exponents present in the model (power of the distance function and power of the curl) for what concerns the application of the theory of pseudo-monotone operators.
2023
Berselli, Luigi C.; Kaltenbach, Alex; Lewandowski, Roger; Ruzicka, Michael
File in questo prodotto:
File Dimensione Formato  
ArXiv-Lomax-2107.00236.pdf

accesso aperto

Descrizione: https://arxiv.org/pdf/2107.00236.pdf
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 268.07 kB
Formato Adobe PDF
268.07 kB Adobe PDF Visualizza/Apri
pafa_Ber_Kalt_Lew_Ruz.pdf

solo utenti autorizzati

Descrizione: versione finale non editoriale
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 418.4 kB
Formato Adobe PDF
418.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
pafa-finale.pdf

solo utenti autorizzati

Descrizione: bozze corrette
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 173 kB
Formato Adobe PDF
173 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1102714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact